期刊文献+
共找到451篇文章
< 1 2 23 >
每页显示 20 50 100
Interfacial microstructure and chemical stability during diffusion bonding of single crystal Al_2O_3-fibres with Ni25.8Al9.6Ta8.3Cr matrix
1
作者 万小军 林建国 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1023-1028,共6页
BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy compos... BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy composites were investigated by scanning electron microscopy (SEM) and analytical transmission electron microscopy (TEM). It was found that the complicated chemical reactions and diffusion processes happened in the interface area between BN-layer and Ni25.8A19.6Ta8.3 during the hot pressing at 1 200-1 400 ℃. A continuous AlN-layer was formed at the interface due to the reaction between NiAl and BN. At the same time, Cr diffused extensively into the BN-layer and reacted with boron to form Cr boride precipitates (CrsB3). In addition, a few particles of Ta-rich phase were also precipitated in NiAl matrix near the interface. 展开更多
关键词 NiAl alloy composite Al2O3 fibre diffusion bonding
下载PDF
The Role of Host-derived Dentinal Matrix Metalloproteinases in Reducing Dentin Bonding of Resin Adhesives 被引量:13
2
作者 Matthias Kern 《International Journal of Oral Science》 SCIE CAS CSCD 2009年第4期163-176,共14页
Dentin matrix metalloproteinases (MMPs) are a family of host-derived proteolytic enzymes trapped within mineralized dentin matrix, which have the ability to hydrolyze the organic matrix of demineralized dentin. Afte... Dentin matrix metalloproteinases (MMPs) are a family of host-derived proteolytic enzymes trapped within mineralized dentin matrix, which have the ability to hydrolyze the organic matrix of demineralized dentin. After bonding with resins to dentin there are usually some exposed collagen fibrils at the bottom of the hybrid layer owing to imperfect resin impregnation of the demineralized dentin matrix. Exposed collagen fibrils might be affected by MMPs inducing hydrolytic degradation, which might result in reduced bond strength.Most MMPs are synthesized and released from odontoblasts in the form of proenzymes, requiring activation to degrade extracellular matrix components. Unfortunately, they can be activated by modem self-etch and etch-and-rinse adhe- sives. The aim of this review is to summarize the current knowledge of the role of dentinal host-derived MMPs in dentin matrix degradation. We also discuss various available MMP inhibitors, especially chlorhexidine, and suggest that they could provide a potential pathway for inhibiting collagen degradation in bonding interfaces thereby increasing dentin bonding durability. 展开更多
关键词 bonding matrix metalloproteinases(MMPs) MMP inhibitors CHLORHEXIDINE
下载PDF
Manufacturing Titanium Metal Matrix Composites by Consolidating Matrix Coated Fibres 被引量:3
3
作者 Hua-Xin PENGDepartment of Aerospace Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第5期647-651,共5页
Titanium metal matrix composites (TiMMCs) reinforced by continuous silicon carbide fibres are being developed for aerospace applications. TiMMCs manufactured by the consolidation of matrix-coated fibre (MCF) metho... Titanium metal matrix composites (TiMMCs) reinforced by continuous silicon carbide fibres are being developed for aerospace applications. TiMMCs manufactured by the consolidation of matrix-coated fibre (MCF) method offer optimum properties because of the resulting uniform fibre distribution, minimum fibre damage and fibre volume fraction control. In this paper, the consolidation of Ti-6Al-4V matrix-coated SiC fibres during vacuum hot pressing has been investigated. Experiments were carried out on multi-ply MCFs under vacuum hot pressing (VHP). In contrast to most of existing studies, the fibre, arrangement has been carefully controlled either in square or hexagonal arrays throughout the consolidated sample. This has enabled the dynamic consolidation behaviour of MCFs to be demonstrated by eliminating the fibre re-arrangement during the VHP process. The microstructural evolution of the matrix coating was reported and the deformation mechanisms involved were discussed. 展开更多
关键词 Titanium matrix composites matrix-coated fibres Vacuum hot pressing MICROSTRUCTURE Dynamic denslfication
下载PDF
Processing of nanostructured metallic matrix composites by a modified accumulative roll bonding method with structural and mechanical considerations 被引量:3
4
作者 Amir Hossein Yaghtin Erfan Salahinejad Ali Khosravifard 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第10期951-956,共6页
Particulate reinforced metallic matrix composites have attracted considerable attention due to their lightweight, high strength, high specific modulus, and good wear resistance. A1/B4C composite strips were produced i... Particulate reinforced metallic matrix composites have attracted considerable attention due to their lightweight, high strength, high specific modulus, and good wear resistance. A1/B4C composite strips were produced in this work by a modified accumulative roll bonding process where the strips were rotated 90° around the normal direction between successive passes. Transmission electron microscopy and X-ray diffraction analyses reveal the development of nanostructures in the Al matrix after seven passes. It is found that the B4C reinforcement distribution in the matrix is improved by progression of the process. Additionally, the tensile yield strength and elongation of the processed materials are increased with the increase of passes. 展开更多
关键词 metallic matrix composites particle reinforced composites NANOSTRUCTURES ALUMINUM boron carbide roll bonding tensile properties
下载PDF
The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells 被引量:16
5
作者 Chen Liu Caihong Zhu +4 位作者 Jun Li Pinghui Zhou Min Chen Huilin Yang Bin Li 《Bone Research》 SCIE CAS CSCD 2015年第2期112-120,共9页
Annulus fibrosus (AF) tissue engineering has recently received increasing attention as a treatment for intervertebral disc 0VD) degeneration; however, such engineering remains challenging because of the remarkable ... Annulus fibrosus (AF) tissue engineering has recently received increasing attention as a treatment for intervertebral disc 0VD) degeneration; however, such engineering remains challenging because of the remarkable complexity of AF tissue. In order to engineer a functional AF replacement, the fabrication of cell-scaffold constructs that mimic the cellular, biochemical and structural features of native AF tissue is critical. In this study, we fabricated aligned fibroua polyurethane scaffolds using an electrospinning technique and used them for culturing AF-derived-stem/progenitor cells (AFSCs). Random fibrous scaffolds, also prepared via electrospinningy were used as a control. We compared the morphology, proliferation, gene expression and matrix production of AFSCs on aligned scaffolds and random scaffolds. There was no apparent difference in the attachment or proliferation of cells cultured on aligned scaffolds and random scaffolds. However, compared to cells on random scaffolds, the AFSCs on aligned scaffolds were more elongated and better aligned, and they exhibited higher gene expression and matrix production of coUagen-I and aggrecan. The gene expression and protein production of coUagen-II did not appear to differ between the two groups. Together, these findings indicate that aligned fibrous scaffolds may provide a favourable microenvironment for the differentiation of AFSCs into cells similar to outer AF cells, which predominantly produce collagen-I matrix. 展开更多
关键词 The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells FIGURE STEM
下载PDF
Transient liquid phase bonding of TiC particulate reinforced magnesium metal matrix composite (TiC_p/AZ91D) 被引量:1
6
作者 谷晓燕 孙大千 刘力 《China Welding》 EI CAS 2007年第1期19-24,共6页
Microstructures and mechanical properties of transient liquid phase (TLP) bonded magnesium metal matrix composite ( MMC) joints using copper interlayer have been investigated. With an increase of bonding times fro... Microstructures and mechanical properties of transient liquid phase (TLP) bonded magnesium metal matrix composite ( MMC) joints using copper interlayer have been investigated. With an increase of bonding times from 5 min to 50 min at bonding temperature of 510 ℃ , the average concentration of copper in the bonded zone decreased, the microstructure in the zone changed from Cu, α-Mg and CuMg2 to α-Mg, CuMg2 and TiC, and mechanical properties of the joint increased. The shear strength of the joint bonded at 510 ℃ for 50 min reached 64 MPa due to the metallurgical bonding of the joint and improving its homogeneity of composition and microstructure. It is favorable to increase the bonding time for improving mechanical properties of TLP bonded magnesium MMC joint. 展开更多
关键词 magnesium metal matrix composite transient liquid phase bonding INTERLAYER microstructure mechanical properties
下载PDF
High Activated Mineral Admixture Slurry Made by Wet-discharged Fly-ash Promoted by Matrix Bonding Component
7
作者 马保国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第5期826-829,共4页
The mineral admixture slurry was made by wet-discharged fly-ash (WDFA) promoted by matrix bonding component (MBC), and the strengths, hydration products change (XRD, SEM) of cement paste made by the slurry were ... The mineral admixture slurry was made by wet-discharged fly-ash (WDFA) promoted by matrix bonding component (MBC), and the strengths, hydration products change (XRD, SEM) of cement paste made by the slurry were studied. The results indicate that in the process of wet-milling preparation, there is a prime proportion (70︰30) between wet-discharged fly-ash and matrix bonding component in the slurry. The physical activation of wet-milling and chemical activation of modified agents accelerate the hydration of cement including the cement and mineral which has not hydrated completely in the matrix bonding component. And the hydrated part of matrix bonding component can play the function of inducing crystallization, which can accelerate secondary hydration reaction of fly-ash. 展开更多
关键词 matrix bonding component wet-milling SLURRY activation
下载PDF
Study on Non-interlayer Liquid Phase Diffusion Bonding for SiCp/ZL101 Aluminum Matrix Composite
8
作者 Wei GUO Jitai NIU Jinfan ZHAI Changli WANG Jie YU Guangtao ZHOU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第z1期88-90,共3页
Through the vacuum diffusion bonding for SiCp/ZLl01 aluminum matrix composite, the influence of bonding parameters on the joint properties was reported, with the aim to obtain optimal bonding parameters. The microstru... Through the vacuum diffusion bonding for SiCp/ZLl01 aluminum matrix composite, the influence of bonding parameters on the joint properties was reported, with the aim to obtain optimal bonding parameters. The microstructureof joints was analyzed by means of optical microscope and scanning electron microscope in order to study the relationship between the macro-properties of joints and the microstructures. It was found that diffusion bonding couldbe used for bonding aluminum matrix composites successfully. Meanwhile, the properties of the matrix and the jointwere all affected by some defects such as the reinforcement aggregation in aluminum matrix composites made bystirring casting. 展开更多
关键词 ALUMINUM matrix composite DIFFUSION bonding SiCp/ZL101 Non-interlayer
下载PDF
Influence of Water Stability on Bond Performance Between Magnesium Phosphate Cement Mortar and Steel Fibre
9
作者 Hu Feng Guanghui Liu +3 位作者 Jiansong Yuan M.Neaz Sheikh Lu Feng Jun Zhao 《Structural Durability & Health Monitoring》 EI 2019年第1期105-121,共17页
The fibre pullout test was conducted to investigate the influence of the water stability on the bond behaviour between the Magnesium phosphate cement(MPC)matrix and the steel fibre.The composition of the MPC-matrix an... The fibre pullout test was conducted to investigate the influence of the water stability on the bond behaviour between the Magnesium phosphate cement(MPC)matrix and the steel fibre.The composition of the MPC-matrix and the immersion age of the specimens are experimentally investigated.The average bond strength and the pullout energy are investigated by analysing the experimental results.In addition,the microscopic characteristics of the interface transition zone are investigated using scanning electron microscopy(SEM).The experimental results showed that the bond performance between the MPC-matrix and the steel fibre decreased significantly with the increase of the duration of immersion in water.The average bond strength between the steel fibre and the MPC-matrix reduced by more than 50%when the specimens were immersed in the water for 28 days.The effect of the water on the interface between the steel fibre and the MPC-matrix was found to be more significant compared to the composition of the MPC-matrix.In addition,the MgO-KH2PO4 mole ratio of the MPC significantly influenced the water stability of the interface zone between the steel fibre and MPC-matrix. 展开更多
关键词 Steel fibre PULLOUT water stability magnesium phosphate cement bond behaviour
下载PDF
Effect of Interfacial Bonding on the Toughening of Al_2O_3/Ni Ceramic Matrix Composites
10
作者 Xudong SUN(Dept. of Materials Science and Engineering, Northeastern University, Shenyang 110006, China)J.A. Yeomans(Dept. of Materials Science and Engineering, University of Surrey, Guildford, Surrey GU2 5XH, UK) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1996年第1期29-34,共6页
The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation.... The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation. A proper control of oxygen content at the Al2O3-Ni interfacecan promote wetting at the intedece, and produce a mechanically interlocked and chemically strengthened intedece, causing most of the nickel particles to be stretched to failure and to expe-rience severe plastic deformation during crack propagation in the composite. Fracture toughnesstesting using a modified double cantilever beam method with in situ observation of crack prop-agation in a scanning electron microscope shows that the composite with the strengthenedinterface has a more desirable R-curve behaviour and a higher fracture toughness value than thenormal composite. 展开更多
关键词 AL Effect of Interfacial bonding on the Toughening of Al2O3/Ni Ceramic matrix Composites NI
下载PDF
Influence of Fabric Parameters on Microstructure,Mechanical Properties and Failure Mechanisms in Carbon-Fibre Reinforced Composites 被引量:2
11
作者 B.Wielage D.Richter +1 位作者 H.Mucha Th.Lampke 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第6期953-959,共7页
The effects of fibre/matrix bonding, fabric density, fibre volume fraction and bundle size on microstructure, mechanical properties and failure mechanisms in carbon fibre reinforced composites (plastic and carbon mat... The effects of fibre/matrix bonding, fabric density, fibre volume fraction and bundle size on microstructure, mechanical properties and failure mechanisms in carbon fibre reinforced composites (plastic and carbon matrix) have been investigated. The microstructure of unloaded and cracked samples was studied by optical microscopy and scanning electron microscopy (SEM), respectively whereas the mechanical behaviour was examined by 3- point bending experiments. Exclusively one type of experimental resole type phenolic resin was applied. A strong fibre/matrix bonding, which is needed for high strength of carbon fibre reinforced plastic (CFRP) materials leads to severe composite damages during the pyrolysis resulting in low strength, brittle failure and a very low utilisation of the fibres strain to failure in C/C composites. Inherent fabric parameters such as an increasing fabric density or bundle size or a reduced fibre volume fraction introduce inhomogenities to the CFRP's microstructure. Results are lower strength and stiffness whereas the strain to failure increases or remains unchanged. Toughness is almost not affected. In C/C composites inhomogenities due to a reduced bundle size reduce strain to failure, strength, stiffness and toughness. Vice versa a declining fibre volume fraction leads to exactly the opposite behaviour. Increasing the fabric density (weight per unit area) causes similar effects as in CFRPs. 展开更多
关键词 CFRPs C/C fibre/matrix bonding Fabric density fibre volume fraction Roving size MICROSTRUCTURE Failure behaviour
下载PDF
Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique 被引量:9
12
作者 Hui Chen Cheng-chang Jia +2 位作者 Shang-jie Li Xian Jia Xia Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第4期364-371,共8页
Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding ... Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding strength and thermo-physical properties of the composites were achieved using an atomized copper alloy with minor additions of Co, Cr, 13, and Ti. The thermal conductivity (TC) oh- mined exhibited as high as 688 W.m-1.K-1, but also as low as 325 W.m-1.K-l. A large variation in TC can be rationalized by the discrepancy of diamond-matrix interfacial bonding. It was found from fractography that preferential bonding between diamond and the Cu-alloy matrix occurred only on the diamond {100} faces. EDS analysis and Raman spectra suggested that selective interfacial bonding may be attributed to amorphous carbon increasing the wettability between diamond and the Cu-alloy matrix. Amorphous carbon was found to significantly affect the TC of the composite by interface modification. 展开更多
关键词 metallic matrix composites diamonds copper alloys interfacial bonding thermal conductivity
下载PDF
Features of microstructure and fracture in the transient liquid phase bonded aluminium-based metal matrix composite joints 被引量:3
13
作者 孙大谦 刘卫红 +2 位作者 吴建红 贾树盛 邱小明 《China Welding》 EI CAS 2002年第1期9-13,共5页
Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the ... Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the base material region. The microstructure of the particulate segregation region consists of alumina particulate and Al alloy matrix with the Al 2Cu and MgAl 2O 4. It contains more and smaller alumina particulates compared with the base material region. The TLP bonded joints have the tensile strength of 150 MPa ~200 MPa and the shear strength of 70 MPa ~100 MPa . With increasing tensile stress, cracks initiate in the particulate segregation region, especially in the particulate/particulate interface and the particulate/matrix interface, and propagate along particulate/matrix interface, througth thin matrix metal and by linking up the close cracks. The particulate segregation region is the weakest during tensile testing and shear testing due to obviously increased proportion of weak bonds (particulate particulate bond and particulate matrix bond). 展开更多
关键词 aluminium based metal matrix composite transient liquid phase bonding MICROSTRUCTURE FRACTURE
下载PDF
High temperature tensile,compression and creep behavior of recycled short carbon fibre reinforced AZ91 magnesium alloy fabricated by a high shearing dispersion technique 被引量:1
14
作者 Sinan Kandemir Sarkis Gavras Hajo Dieringa 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第5期1773-1787,共15页
The present study seeks the feasibility of using short carbon fibres recycled from polymer matrix composites as alternative to virgin carbon fibres in the reinforcement of magnesium alloys.The microstructures,high tem... The present study seeks the feasibility of using short carbon fibres recycled from polymer matrix composites as alternative to virgin carbon fibres in the reinforcement of magnesium alloys.The microstructures,high temperature mechanical and creep properties of AZ91 alloy and its composites with various recycled carbon fibre contents(2.5 and 5 wt.%)and lengths(100 and 500μm)were investigated in the temperature range of 25-200℃.The microstructural characterization showed that the high shear dispersion technique provided the cast composites with finer grains and relatively homogenous distribution of fibres.The materials tested displayed different behaviour depending on the type of loading.In general,while enhancements in the mechanical properties of composites is attributed to the load bearing and grain refinement effects of fibres,the fluctuations in the properties were discussed on the basis of porosity formation,relatively high reinforcement content leading to fibre clustering and interlayer found between the matrix and reinforcement compared to those of AZ91 alloy.The compressive creep tests revealed similar or higher minimum creep rates in the recycled carbon fibre reinforced AZ91 in comparison to the unreinforced AZ91. 展开更多
关键词 Metal matrix composites Magnesium alloys Recycled carbon fibre High-shear dispersion Microstructure Mechanical properties CREEP
下载PDF
Formation process, microstructure and mechanical property of transient liquid phase bonded aluminium-based metal matrix composite joint 被引量:5
15
作者 孙大谦 刘卫红 +1 位作者 贾树盛 邱小明 《中国有色金属学会会刊:英文版》 CSCD 2004年第1期105-110,共6页
The formation process, microstructure and mechanical properties of transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joint with copper interlayer were investigated. The formation process... The formation process, microstructure and mechanical properties of transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joint with copper interlayer were investigated. The formation process of the TLP joint comprises a number of stages: plastic deformation and solid diffusion (stage 1), dissolution of interlayer and base metal (stage 2), isothermal solidification (stage 3) and homogenization (stage 4). The microstructure of the joint depends on the joint formation process (distinct stages). The plastic deformation and solid diffusion in stage 1 favoure the intimate contact at interfaces and liquid layer formation. The microstructure of joint consists of aluminium solid solution, alumina particle, Al 2Cu and MgAl 2O 4 compounds in stage 2. The most pronounced feature of joint microstructure in stage 3 is the alumina particle segregation in the center of the joint. The increase of joint shear strength with increasing bonding temperature is mainly attributed to improving the fluidity and wettability of liquid phase and decreasing the amount of Al 2Cu brittle phase in the joint. The principal reason of higher bonding temperature (>600 ℃) resulting in lowering obviously the joint shear strength is the widening of alumina particle segregation region that acts as a preferential site for failure. The increase of joint shear strength with increasing holding time is mainly associated with decreasing the amount of Al 2Cu brittle phase and promoting homogenization of joint. 展开更多
关键词 金属基复合材料 制备 显微结构 机械性能 钎焊 瞬间液相连接 TLP
下载PDF
The Failure Mechanisms of Ultra-high Molecular Weight Polyethylene Fibre Composites Under In-plane Compression
16
作者 刘国亮 张玉武 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期240-247,共8页
The in-plane compressive characteristics of the ultra-high molecular weight polyethylene(UHMWPE)fibre(Dyneema█)reinforced composites,both in 0/90°and±45°fibre orientations with respect to the loading d... The in-plane compressive characteristics of the ultra-high molecular weight polyethylene(UHMWPE)fibre(Dyneema█)reinforced composites,both in 0/90°and±45°fibre orientations with respect to the loading direction,have been investigated.The composite made from unidirectional high modulus fibres(volume fraction 83%)and low strength polyurethane matrix(volume fraction 17%)is layered in an orthogonally alternating manner.The different failure mechanisms for the composites with 0/90°and±45°fibre orientations have been detected with the methods of experimental measurement,SEM observation and theoretical analysis.The composites specimens of 0/90°fibre orientation failed with macro-buckling of the high-modulus UHMWEP fibre layers with the matrix damage,whereas the specimens of±45°fibre orientation failed with the shearing of the soft matrix.Hence,the composite specimens in 0/90°fibre orientation had higher stiffness as well as compressive strength than those in±45°fibre orientation.The failure criteria of the composites under in-plane compression was employed to characterize the failure mechanism.Compared with the traditional thermoset matrix,the soft thermoplastic matrix leads to lower strength and higher failure strain of fibre reinforced composites under in-plane compression.In addition,the composite specimens cut by waterjet machine exhibited higher stress levels than those cut by bandsaw that introduced more initial imperfections with the temperature rising and tensile shocking.The comparison between the methodologies for cutting the tough composites can provide a valuable suggestion to obtain required composite structures without reducing the mechanical properties. 展开更多
关键词 UHMWPE fibre composites IN-PLANE compression FAILURE mechanisms fibre BUCKLING matrix SHEARING
下载PDF
Investigation of the role of aziridine bonding agents on the aging of the composite solid rocket propellant(CSRP) 被引量:2
17
作者 Amged A Ali ZHANG Jian-wei CAI Guo-biao 《航空动力学报》 EI CAS CSCD 北大核心 2008年第11期2101-2106,共6页
The role of bonding agents on the aging characteristics is one of the important research topics.Aging program of the prepared propellant samples was conducting as follows:Five samples,two free of bonding agents,and th... The role of bonding agents on the aging characteristics is one of the important research topics.Aging program of the prepared propellant samples was conducting as follows:Five samples,two free of bonding agents,and three containing an aziridine based bonding agents(MAPO,HX-752,MAT4),four samples based on different bonding and curing agents all were aged at 70 ℃.The prepared bonding agent "MAT4" gave remarkable improvements and resulted in highly stable mechanical properties comparing with HX-752 or MAPO.The selected bonding agents family inhibited the rate of decomposition of the propellants during the aging periods and supported the propellant matrix against decomposition at the elevated temperatures. 展开更多
关键词 氮丙啶黏结剂 老化现象 复合固体火箭推进剂 航空动力系统
下载PDF
SiC FIBRE-REINFORCED Ti-BASED COMPOSITE
18
作者 Lu Yuxiong Li Douxing +2 位作者 Shi Nanlin Ma Zhongyi Bi Jing(Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110015) 《中国有色金属学会会刊:英文版》 CSCD 1996年第4期72-75,共4页
SiCFIBRE-REINFORCEDTi-BASEDCOMPOSITE¥LuYuxiong;LiDouxing;ShiNanlin;MaZhongyi;BiJing(InstituteofMetalResearch... SiCFIBRE-REINFORCEDTi-BASEDCOMPOSITE¥LuYuxiong;LiDouxing;ShiNanlin;MaZhongyi;BiJing(InstituteofMetalResearch,ChineseAcademyof... 展开更多
关键词 CVD SIC fibre β-Ti alloy vacuum hot PRESS diffusion bonding technique SiC_f/Ti COMPOSITE
下载PDF
Reactive Diffusion Bonding of SiCp/Al Composites by Insert Powder Layers with Eutectic Composition
19
作者 Jihua HUANG Yueling DONG, Jiangang ZHANG, Yun WAN and Guoan ZHOUSchool of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第5期779-781,共3页
Mixed Al-Si and Al-Cu powders were investigated as insert layers to reactive diffusion bond SiCp/6063 metal matrix composite (MMC). The results show that SiCp/6063 MMC joints bonded by the insert layers of the mixed... Mixed Al-Si and Al-Cu powders were investigated as insert layers to reactive diffusion bond SiCp/6063 metal matrix composite (MMC). The results show that SiCp/6063 MMC joints bonded by the insert layers of the mixed Al-Si and Al-Cu powders have a dense joining layer of high quality. The mass transfer between the bonded materials and insert layers during bonding leads to the hypoeutectic microstructure of the joining layers bonded by both the mixed Al-Si and Al-Cu powders with eutectic composition. At fixed bonding time (temperature), the shear strength of the joints by both insert layers of the mixed Al-Si and Al-Cu powders increases with increasing the bonding temperature (time), but get maxima at bonding temperature 600℃ (time 90 min). 展开更多
关键词 Reactive diffusion bonding Insert powder layer SiCp/Al metal matrix composites
下载PDF
Tensile Properties and Fractographic Analysis of Low Density Polyethylene Composites Reinforced with Chemically Modified Keratin-Based Biofibres
20
作者 Isiaka Oluwole Oladele Jimmy Lolu Olajide +1 位作者 Okikiola Ganiyu Agbabiaka Olawale Opeyemi Akinwumi 《Journal of Minerals and Materials Characterization and Engineering》 2015年第4期344-352,共9页
This research has investigated the tensile properties and fractography of animal fibre-reinforced low density polyethylene composites. The composites were synthesized by hot compression moulding using chemically modif... This research has investigated the tensile properties and fractography of animal fibre-reinforced low density polyethylene composites. The composites were synthesized by hot compression moulding using chemically modified white and black cow hair biofibres as the reinforcing phase of composites. Alkaline solutions of varying molarities were used to prepare the chemical treatments in this present study. Tensile properties of the developed composites were evaluated based on molarities of chemical treatment and % fibre loading. Scanning electron microscopy was used to characterize the morphologies of the fractured surfaces of composites. Obtained tensile test results revealed significant enhancement in the tensile properties of composites, with the optimum combination of tensile properties presented by 2 wt% white cow hair biofibre reinforcement treated with 0.15 M sodium hydroxide. Observations from the fractographic analysis of the developed composites revealed shearing of the polymer matrix at the fibre-matrix interface and no fibre pullout behaviour. 展开更多
关键词 ANIMAL fibre ALKALINE Treatment fibre-matrix Interface Mechanical Behaviour Polymer matrix Composites
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部