BACKGROUND The incidence and prevalence of atrial fibrillation are increasing each year,and this condition is one of the most common clinical arrhythmias.AIM To investigate the levels and significance of serum fibrobl...BACKGROUND The incidence and prevalence of atrial fibrillation are increasing each year,and this condition is one of the most common clinical arrhythmias.AIM To investigate the levels and significance of serum fibroblast growth factor 23(FGF-23)and miR-208 b in patients with atrial fibrillation and their relationship with prognosis.METHODS From May 2018 to October 2019,240 patients with atrial fibrillation were selected as an observation group,including 134 with paroxysmal atrial fibrillation and 106 with persistent atrial fibrillation;150 patients with healthy sinus rhythm were selected as a control group.The serum levels of FGF-23 and miR-208 b in the two groups were measured.In the observation group,cardiac parameters were determined by echocardiography.RESULTS The serum levels of FGF-23 and miR-208 b in the observation group were 210.20±89.60 ng/mL and 5.30±1.22 ng/mL,which were significantly higher than the corresponding values in the control group(P<0.05).In the observation group,the serum levels of FGF-23 and miR-208 b in patients with persistent atrial fibrillation were 234.22±70.05 ng/mL and 5.83±1.00 ng/mL,which were significantly higher than the corresponding values in patients with paroxysmal atrial fibrillation(P<0.05).The left atrial dimension(LAD)of patients with persistent atrial fibrillation was 38.81±5.11 mm,which was significantly higher than that of patients with paroxysmal atrial fibrillation(P>0.05).The serum levels of FGF-23and miR-208 b were positively correlated with the LAD(r=0.411 and 0.382,P<0.05).In the observation group,the serum levels of FGF-23 and miR-208 b in patients with a major cardiovascular event(MACE)were 243.30±72.29 ng/mL and 6.12±1.12 ng/mL,which were significantly higher than the corresponding values in patients without a MACE(P<0.05).CONCLUSION The serum levels of FGF-23 and miR-208 b are increased in patients with atrial fibrillation and are related to the type of disease,cardiac parameters,and prognosis.展开更多
Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome in which ectopic production of fibroblast growth factor 23 (FGF23) by non-malignant mesenchymal tumors causes phosphate wasting and bone fractures...Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome in which ectopic production of fibroblast growth factor 23 (FGF23) by non-malignant mesenchymal tumors causes phosphate wasting and bone fractures. Recent studies have implicated the hypoxia-inducible factor-la (HIF-la) in other phosphate wasting disorders caused by elevated FGF23, including X-linked hypophosphatemic rickets and autosomal dominant hypophosphatemia. Here we provide evidence that HIF-la mediates aberrant FGF23 in TIO by transcriptionally activating its promoter. Immunohistochemical studies in phosphaturic mesenchymal tumors resected from patients with documented TIO showed that HIF-la and FGF23 were co-localized in spindle- shaped cells adjacent to blood vessels. Cultured tumor tissue produced high levels of intact FGF23 and demonstrated increased expression of HIF-la protein. Transfection of MC3T3-E1 and Saos-2 cells with a HIF-la expression construct induced the activity of a FGF23 reporter construct. Prior treatment of tumor organ cultures with HIF-la inhibitors decreased HIF-la and FGF23 protein accumulation and inhibited HIF-la-induced luciferase reporter activity in transfected cells. Chromatin immunoprecipitation assays confirmed binding to a HIF-la consensus sequence within the proximal FGF23 promoter, which was eliminated by treatment with a HIF-la inhibitor. These results show for the first time that HIF-la is a direct transcriptional activator of FGF23 and suggest that upregulation of HIF-la activity in TIO contributes to the aberrant FGF23 production in these patients.展开更多
Tumor-induced osteomalacia (TIO), or oncogenic osteomalacia (OOM), is a rare acquired paraneoplastic disease characterized by renal phosphate wasting and hypophosphatemia. Recent evidence shows that tumor-overexpresse...Tumor-induced osteomalacia (TIO), or oncogenic osteomalacia (OOM), is a rare acquired paraneoplastic disease characterized by renal phosphate wasting and hypophosphatemia. Recent evidence shows that tumor-overexpressed fibroblast growth factor 23 (FGF23) is responsible for the hypophosphatemia and osteomalacia. The tumors associated with TIO are usually phosphaturic mesenchymal tumor mixed connective tissue variants (PMTMCT). Surgical removal of the responsible tumors is clinically essential for the treatment of TIO. However, identifying the responsible tumors is often difficult. Here, we report a case of a TIO patient with elevated serum FGF23 levels suffering from bone pain and hypophosphatemia for more than three years. A tumor was finally located in first metacarpal bone by octreotide scintigraphy and she was cured by surgery. After complete excision of the tumor, serum FGF23 levels rapidly decreased, dropping to 54.7% of the preoperative level one hour after surgery and eventually to a little below normal. The patient's serum phosphate level rapidly improved and returned to normal level in four days. Accordingly, her clinical symptoms were greatly improved within one month after surgery. There was no sign of tumor recurrence during an 18-month period of follow-up. According to pathology, the tumor was originally diagnosed as "glomangioma" based upon a biopsy sample, "proliferative giant cell tumor of tendon sheath" based upon sections of tumor, and finally diagnosed as PMTMCT by consultation one year after surgery. In conclusion, although an extremely rare disease, clinicians and pathologists should be aware of the existence of TIO and PMTMCT, respectively.展开更多
Fibroblast growth factor 23 (FGF23) is a hormone that is mainly secreted by osteocytes and osteoblasts in bone. The critical role of FGF23 in mineral ion homeostasis was first identified in human genetic and acquire...Fibroblast growth factor 23 (FGF23) is a hormone that is mainly secreted by osteocytes and osteoblasts in bone. The critical role of FGF23 in mineral ion homeostasis was first identified in human genetic and acquired rachitic diseases and has been further characterised in animal models. Recent studies have revealed that the levels of FGF23 increase significantly at the very early stages of chronic kidney disease (CKD) and may play a critical role in mineral ion disorders and bone metabolism in these patients. Our recent publications have also shown that FGF23 and its cofactor, Klotho, may play an independent role in directly regulating bone mineralisation instead of producing a systematic effect. In this review, we will discuss the new role of FGF23 in bone mineralisation and the pathophysiology of CKD-related bone disorders.展开更多
The klotho gene has been identified as an aging suppressor that encodes a protein involved in cardiovascular disease (CVD). The inac- tivation of the klotho gene causes serious systemic disorders resembling human ag...The klotho gene has been identified as an aging suppressor that encodes a protein involved in cardiovascular disease (CVD). The inac- tivation of the klotho gene causes serious systemic disorders resembling human aging, such as atherosderosis, diffuse vascular calcification and shortened life span. Klotho has been demonstrated to ameliorate vascular endothelial dysfunction and delay vascular calcification. Fur- thermore, klotho gene polymorphisms in the human are associated with various cardiovascular events. Recent experiments show that klotho may reduce transient receptor potential canonical6 (TRPC6) channels, resulting in protecting the heart from hypertrophy and systolic dys- function. Fibroblast growth factor23 (FGF23) is a bone-derived hormone that plays an important role in the regulation of phosphate and vi- tamin D metabolism. FGF23 accelerates urinary phosphate excretion and suppresses 1,25-dihydroxy vitaminD3 (1,25(OH)2D3)synthesis in the presence ofFGF receptorl (FGFR1) and its co-receptor ldotho, principally in the kidney. The hormonal affects of circulating klotho pro- tein and FGF23 on vascular and heart have contributed to an understanding of their roles in the pathophysiology of arterial stiffness and left ventricular hypertrophy. Klotho and FGF23 appear to play a critical role in the pathogenesis of vascular disease, and may represent a novel potential therapeutic strategy for clinical intervention.展开更多
The present study explored the distribution and localization of fibroblast growth factor-8 and its potential receptor, fibroblast growth factor receptor-3, in adult rat brain in vivo and in nerve cells during differen...The present study explored the distribution and localization of fibroblast growth factor-8 and its potential receptor, fibroblast growth factor receptor-3, in adult rat brain in vivo and in nerve cells during differentiation of neural stem/progenitor cells in vitro. Immunohistochemistry was used to examine the distribution of fibroblast growth factor-8 in adult rat brain in vivo. Localization of fibroblast growth factor-8 and fibroblast growth factor receptor-3 in cells during neural stem/progenitor cell differentiation in vitro was detected by immunofluorescence. Flow cytometry and immunofluorescence were used to evaluate the effect of an anti-fibroblast growth factor-8 antibody on neural stem/progenitor cell differentiation and expansion in vitro. Results from this study confirmed that fibroblast growth factor-8 was mainly distributed in adult midbrain, namely the substantia nigra, compact part, dorsal tier, substantia nigra and reticular part, but was not detected in the forebrain comprising the caudate putamen and striatum. Unusual results were obtained in retrosplenial locations of adult rat brain. We found that fibroblast growth factor-8 and fibroblast growth factor receptor-3 were distributed on the cell membrane and in the cytoplasm of nerve cells using immunohistochemistry and immunofluorescence analyses. We considered that the distribution of fibroblast growth factor-8 and fibroblast growth factor receptor-3 in neural cells corresponded to the characteristics of fibroblast growth factor-8, a secretory factor. Addition of an anti-fibroblast growth factor-8 antibody to cultures significantly affected the rate of expansion and differentiation of neural stem/progenitor cells. In contrast, addition of recombinant fibroblast growth factor-8 to differentiation medium promoted neural stem/progenitor cell differentiation and increased the final yields of dopaminergic neurons and total neurons. Our study may help delineate the important roles of fibroblast growth factor-8 in brain activities and neural stem/progenitor cell differentiation.展开更多
Alternatively activated macrophages (M2 macrophages) promote central nervous system regeneration. Our previous study demonstrated that treatment with peripheral nerve grafts and fibroblast growth factor-1 recruited ...Alternatively activated macrophages (M2 macrophages) promote central nervous system regeneration. Our previous study demonstrated that treatment with peripheral nerve grafts and fibroblast growth factor-1 recruited more M2 macrophages and improved partial functional recovery in spinal cord transected rats. The migration of macrophages is matrix metalloproteinase (MMP) dependent. We used a general inhibitor of MMPs to influence macrophage migration, and we examined the migration of macrophage populations and changes in spinal function. Rat spinal cords were completely transected at Ts, and 5 mm of spinal cord was removed (group T). In group R, spinal cord-transected rats received treatment with fibroblast grow th factor- 1 and peripheral nerve grafts. In group RG, rats received the same treatment as group R with the addition of 200 μM GM6001 (an MMP inhibitor) to the fibrin mix. We found that MMP-9, but not MMP- 2, was upregulated in the graft area of rats in group R. Local application of the MMP inhibitor resulted in a reduction in the ratio of arginase-1 (M2 macrophage subset)/inducible nitric oxide synthase-postive cells. When the MMP inhibitor was applied at 8 weeks postoperation, the partial functional recovery observed in group R was lost. This effect was accompanied by a decrease in brain-derived neurotrophic factor levels in the nerve graft. These results suggested that the arginase-1 positive population in spinal cord transected rats is a migratory cell population rather than the phenotypic conversion of early iNOS^+ cells and that the migration of the arginase-1^+ population could be regulated locally. Simultaneous application of MMP in- hibitors or promotion of MMP activity for spinal cord injury needs to be considered if the coadministered treatment involves M2 recruitment.展开更多
There is evidence that the expression of members of the fibroblast growth factor (FGF) protein family is altered in post-mortem brains of humans suffering from major depressive disorder. The present study examined w...There is evidence that the expression of members of the fibroblast growth factor (FGF) protein family is altered in post-mortem brains of humans suffering from major depressive disorder. The present study examined whether the expression of fibroblast growth factor-2 (FGF2) and fibroblast growth factor receptor-1 (FGFR1) protein is altered following chronic stress in an animal model. Rats were exposed to 35 days of chronic unpredictable mild stress, and then tested using open-field and sucrose consumption tests. Compared with the control group, rats in the chronic stress group exhibited obvious depressive-like behaviors, including anhedonia, anxiety and decreased mobility. The results of western blot analysis and immunohistochemical analysis revealed a downregulation of the expression of FGF2 and FGFR1 in the hippocampus of rats, particularly in the CA1, CA3 and dentate gyrus. This decreased expression is in accord with the results of post-mortem studies in humans with major depressive disorder. These findings suggest that FGF2 and FGFR1 proteins participate in the pathophysiology of depressive-like behavior, and may play an important role in the mechanism of chronic stress-induced depression.展开更多
Background: Left ventricular hypertrophy (LVH) is a common cardiovascular complication and an independent risk factor for cardiovascular death in hemodialysis (HD) patients. Previous studies have shown that fibroblast...Background: Left ventricular hypertrophy (LVH) is a common cardiovascular complication and an independent risk factor for cardiovascular death in hemodialysis (HD) patients. Previous studies have shown that fibroblast growth factor 23 (FGF23), which has an important role in phosphate metabolism, is elevated in HD patients. Objectives: The aim of this study was to determine the association of FGF23 and LVH and the prognostic value of serum FGF23 level in HD patients. One hundred seven HD patients were evaluated for LVH by echocardiography. Serum FGF23 levels were measured using a commercial enzyme-linked immunosorbent assay kit. Results: Patients with LVH were more likely to have higher systolic blood pressure (BP) and LVH was significantly associated with female gender and higher serum levels of phosphate and calcium ×phosphate products. LVH was also associated with higher serum FGF23 level. Multivariate analysis indicated that serum FGF23 level, systolic BP, and serum phosphate level remained correlated with LVH. This suggested that serum FGF23 level is independently associated with LVH in our HD patients. Cox analysis indicated no significant difference in risk of death for patients with elevated serum FGF23 level. Conclusion: LVH has a high prevalence in HD patients, and FGF23 is independently associated with LVH but is not a predictor for prognosis during a 4-year follow-up period.展开更多
Objective. This study was to investigate the effects of transforming growth factor-β(TGFβ) and fi- broblast growth factor (FGF) in the subcapsular opacification formation of the lens. Methods. Lens epithelial explan...Objective. This study was to investigate the effects of transforming growth factor-β(TGFβ) and fi- broblast growth factor (FGF) in the subcapsular opacification formation of the lens. Methods. Lens epithelial explants from 10-day-old rats were cultured with TGFβ1 or TGFβ2 in the presence of FGF for 5 days, then were examined by light and electron microscopy, and by immunolocal- ization of smooth muscle(α-sm) actin and type I collagen. Results. In TGFβ/FGF-treated explants,extensive proliferation occured, with formation of spindle and star-shaped cells. These cells showed ultrastructure and biochemical features of fibroblast or myofibroblast. Prominent Golgi apparatus and rough endoplaic reticulum were observed in some cells. Intracellular micro- filaments with cytoplasmic dense babies and membrane associated dense bodies, features of smooth muscle cells, were also observed. Some cells showed reactivity to -sin actin antibody. TGFβ/FGF-treated ex- plants were strongly stained with type I collagen antibody. Condusion. In the presence of FGF, TGFβ1 and TGFβ2 induced lens epithelial cell (LEC ) proliferation and transformation into fibroblast or myofibroblast-like cells, with producing of abundant collagen matrix in the explants. The changes are similar to the metaplasia that occurrs in subcapsular opacification of the lens. The findings suggest that TGFβ and FGF plays a role in the pathogenesis of subcapsular opacification of the lens.展开更多
BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate si...BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate signal transduction systems of Ras/MAPK and PI3K/Akl, which promote glioma growth. OBJECTIVE: To utilize RNA interference (RNAi) technique to down-regulate FGF-2, IGF-1, and IGF-1R gene expression, and to investigate the effects of these genes on rat C6 glioma cells, as well as the feasibility of RNAi for treating glioma. DESIGN, TIME AND SETTING: This neurooncological, randomized, controlled, in vivo and in vitro experiment, which used RNAi methodology, was performed at the Laboratory of Molecular Biology, Institute of Biochemistry, Chinese Academy of Sciences between August 2005 and February 2008. MATERIALS: Rat C6 cell lines were purchased from Shanghai Institute of Cellular Biology Affiliated to Chinese Academy of Sciences. Small interfering RNA (siRNA) was synthesized by Shanghai GenePharma. Anti-IGF-1, anti-IGF-1R, anti-FGF-2, anti-mouse and anti-rabbit IgG G1-HRP antibodies were provided by Santa Cruz Biotechnology, USA. Four to six week-old BALB/c nude mice were purchased from the Laboratory Animal Center, Chinese Academy of Sciences. METHODS: C6 glioma cells were transfected with siRNA, which was chemically synthesized in vitro to correspond to endogenous FGF-2, IGF-1, and IGF-1R genes. The inhibition ratio of targeting mRNA expression was detected by semiquantitative RT-PCR, and protein expression was determined by Western blot analysis. C6 glioma cell proliferation was observed using a growth curve C6 glioma cell apoptosis rate and cell cycle were detected by flow cytometry. C6 glioma cell growth regression was observed by transwell migration assay. In addition, nude mouse subcutaneous tumor models were used in this study. For studying the anti-tumor effects of IGF-1 and IGF-1R siRNA, two blank control groups, with six mice each, were set up: A (2.5 μg siRNA was injected one week after C6 cells were inoculated, Le., when tumor volume reached 8 mm × 8 mm) and B (siRNA was injected at the same time with C6 cells were inoculated. To study the effects of FGF-2 siRNA, the groups consisted of a blank control group, negative control group, 2.6 μg siRNA group, 4 μg siRNA group, and 5.3 μg siRNA group, with six mice each. MAIN OUTCOME MEASURES: mRNA and protein inhibition ratio of FGF-2, IGF-1, and IGF-1 R; C6 glioma cell proliferation, apoptosis, and cycle growth arrest; C6 glioma cell growth regression and subcutaneous tumorigenicity rates. RESULTS: All siRNA constructs proved to be effective. After 48 hours, transfection of 200 nmol/L siRNA resulted in a FGF-2 or IGF-1R gene inhibition ratio 〉 80% and an IGF-1 gene inhibition ratio of approximately 70%. Protein expression levels for FGF-2, IGF-1, and IGF-1R decreased in a dose-dependent manner following siRNA transfection, with an inhibition rate 〉 85%, 60%, and 50%, respectively. C6 glioma cell proliferation and apoptosis rates increased in proportion to siRNA. The apoptosis rate of C6 glioma cells induced by FGF-2, IGF-1, and IGF-1R siRNA was 39.96%, 15.07% and 22.47%, respectively (P 〈 0.01). Transfection of 200 nmol/L IGF or IGF-1R siRNA for 48 hours suppressed C6 glioma cell migration. At 30 days after intratumoral injection of 2.6, 4, and 5.3 tJg FGF-2 siRNA, tumor growth regression rate of FGF-2 siRNA was 56%, 67%, and 86%, respectively. The tumor growth regression rate was 71.88% and 45.71%, respectively, when IGF-1 or IGF-1R siRNA was intratumorally injected 1 week after C6 glioma cell transplantation. When IGF-1 or IGF-1 R siRNA was intratumorally injected during C6 glioma cell transplantation, the tumor growth regression rate was 78.13% and 74.29%, respectively. CONCLUSION: siRNA transfection downregulated gene expression of FGF-2, IGF-1, and IGF-1R In addition, siRNA treatment markedly suppressed glioma cell proliferation, growth, and migration, and concomitantly reduced subcutaneous tumorigenicity.展开更多
Liver is unique in its capacity to regenerate in response to injury or tissue loss. Hepatocytes and other liver cells are able to proliferate and repopulate the liver. However, when this response is impaired, the cont...Liver is unique in its capacity to regenerate in response to injury or tissue loss. Hepatocytes and other liver cells are able to proliferate and repopulate the liver. However, when this response is impaired, the contribution of hepatic progenitors becomes very relevant. Here, we present an update of recent studies on growth factors and cytokine-driven intracellular pathways that govern liver stem/pro-genitor cell expansion and differentiation, and the rel-evance of these signals in liver development, regeneration and carcinogenesis. Tyrosine kinase receptor signaling, in particular, c-Met, epidermal growth factor receptors or fibroblast growth factor receptors, contribute to prolifera-tion, survival and differentiation of liver stem/progenitor cells. Different evidence suggests a dual role for the trans-forming growth factor (TGF)-β signaling pathway in liver stemness and differentiation. On the one hand, TGF-βmediates progression of differentiation from a progenitor stage, but on the other hand, it contributes to the expan-sion of liver stem cells. Hedgehog family ligands are nec-essary to promote hepatoblast proliferation but need to be shut off to permit subsequent hepatoblast differentiation. In the same line, the Wnt family and β-catenin/T-cell fac-tor pathway is clearly involved in the maintenance of liver stemness phenotype, and its repression is necessary for liver differentiation during development. Collectively, data indicate that liver stem/progenitor cells follow their own rules and regulations. The same signals that are essential for their activation, expansion and differentiation are good candidates to contribute, under adequate conditions, to the paradigm of transformation from a pro-regenerative to a pro-tumorigenic role. From a clinical perspective, this is a fundamental issue for liver stem/progenitor cell-based therapies.展开更多
文摘BACKGROUND The incidence and prevalence of atrial fibrillation are increasing each year,and this condition is one of the most common clinical arrhythmias.AIM To investigate the levels and significance of serum fibroblast growth factor 23(FGF-23)and miR-208 b in patients with atrial fibrillation and their relationship with prognosis.METHODS From May 2018 to October 2019,240 patients with atrial fibrillation were selected as an observation group,including 134 with paroxysmal atrial fibrillation and 106 with persistent atrial fibrillation;150 patients with healthy sinus rhythm were selected as a control group.The serum levels of FGF-23 and miR-208 b in the two groups were measured.In the observation group,cardiac parameters were determined by echocardiography.RESULTS The serum levels of FGF-23 and miR-208 b in the observation group were 210.20±89.60 ng/mL and 5.30±1.22 ng/mL,which were significantly higher than the corresponding values in the control group(P<0.05).In the observation group,the serum levels of FGF-23 and miR-208 b in patients with persistent atrial fibrillation were 234.22±70.05 ng/mL and 5.83±1.00 ng/mL,which were significantly higher than the corresponding values in patients with paroxysmal atrial fibrillation(P<0.05).The left atrial dimension(LAD)of patients with persistent atrial fibrillation was 38.81±5.11 mm,which was significantly higher than that of patients with paroxysmal atrial fibrillation(P>0.05).The serum levels of FGF-23and miR-208 b were positively correlated with the LAD(r=0.411 and 0.382,P<0.05).In the observation group,the serum levels of FGF-23 and miR-208 b in patients with a major cardiovascular event(MACE)were 243.30±72.29 ng/mL and 6.12±1.12 ng/mL,which were significantly higher than the corresponding values in patients without a MACE(P<0.05).CONCLUSION The serum levels of FGF-23 and miR-208 b are increased in patients with atrial fibrillation and are related to the type of disease,cardiac parameters,and prognosis.
基金supported by NIH grants AR049510 (TLC) and AR045955 (LDQ)
文摘Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome in which ectopic production of fibroblast growth factor 23 (FGF23) by non-malignant mesenchymal tumors causes phosphate wasting and bone fractures. Recent studies have implicated the hypoxia-inducible factor-la (HIF-la) in other phosphate wasting disorders caused by elevated FGF23, including X-linked hypophosphatemic rickets and autosomal dominant hypophosphatemia. Here we provide evidence that HIF-la mediates aberrant FGF23 in TIO by transcriptionally activating its promoter. Immunohistochemical studies in phosphaturic mesenchymal tumors resected from patients with documented TIO showed that HIF-la and FGF23 were co-localized in spindle- shaped cells adjacent to blood vessels. Cultured tumor tissue produced high levels of intact FGF23 and demonstrated increased expression of HIF-la protein. Transfection of MC3T3-E1 and Saos-2 cells with a HIF-la expression construct induced the activity of a FGF23 reporter construct. Prior treatment of tumor organ cultures with HIF-la inhibitors decreased HIF-la and FGF23 protein accumulation and inhibited HIF-la-induced luciferase reporter activity in transfected cells. Chromatin immunoprecipitation assays confirmed binding to a HIF-la consensus sequence within the proximal FGF23 promoter, which was eliminated by treatment with a HIF-la inhibitor. These results show for the first time that HIF-la is a direct transcriptional activator of FGF23 and suggest that upregulation of HIF-la activity in TIO contributes to the aberrant FGF23 production in these patients.
文摘Tumor-induced osteomalacia (TIO), or oncogenic osteomalacia (OOM), is a rare acquired paraneoplastic disease characterized by renal phosphate wasting and hypophosphatemia. Recent evidence shows that tumor-overexpressed fibroblast growth factor 23 (FGF23) is responsible for the hypophosphatemia and osteomalacia. The tumors associated with TIO are usually phosphaturic mesenchymal tumor mixed connective tissue variants (PMTMCT). Surgical removal of the responsible tumors is clinically essential for the treatment of TIO. However, identifying the responsible tumors is often difficult. Here, we report a case of a TIO patient with elevated serum FGF23 levels suffering from bone pain and hypophosphatemia for more than three years. A tumor was finally located in first metacarpal bone by octreotide scintigraphy and she was cured by surgery. After complete excision of the tumor, serum FGF23 levels rapidly decreased, dropping to 54.7% of the preoperative level one hour after surgery and eventually to a little below normal. The patient's serum phosphate level rapidly improved and returned to normal level in four days. Accordingly, her clinical symptoms were greatly improved within one month after surgery. There was no sign of tumor recurrence during an 18-month period of follow-up. According to pathology, the tumor was originally diagnosed as "glomangioma" based upon a biopsy sample, "proliferative giant cell tumor of tendon sheath" based upon sections of tumor, and finally diagnosed as PMTMCT by consultation one year after surgery. In conclusion, although an extremely rare disease, clinicians and pathologists should be aware of the existence of TIO and PMTMCT, respectively.
基金supported by the National Natural Science Foundation of China (81371173)the Program for New Century Excellent Talents in University (NCET-12-0379)+1 种基金Sichuan Provincial Government Grant (2013JQ0017)supported by Open Fund of State Key Laboratory of Oral Diseases, Sichuan University
文摘Fibroblast growth factor 23 (FGF23) is a hormone that is mainly secreted by osteocytes and osteoblasts in bone. The critical role of FGF23 in mineral ion homeostasis was first identified in human genetic and acquired rachitic diseases and has been further characterised in animal models. Recent studies have revealed that the levels of FGF23 increase significantly at the very early stages of chronic kidney disease (CKD) and may play a critical role in mineral ion disorders and bone metabolism in these patients. Our recent publications have also shown that FGF23 and its cofactor, Klotho, may play an independent role in directly regulating bone mineralisation instead of producing a systematic effect. In this review, we will discuss the new role of FGF23 in bone mineralisation and the pathophysiology of CKD-related bone disorders.
文摘The klotho gene has been identified as an aging suppressor that encodes a protein involved in cardiovascular disease (CVD). The inac- tivation of the klotho gene causes serious systemic disorders resembling human aging, such as atherosderosis, diffuse vascular calcification and shortened life span. Klotho has been demonstrated to ameliorate vascular endothelial dysfunction and delay vascular calcification. Fur- thermore, klotho gene polymorphisms in the human are associated with various cardiovascular events. Recent experiments show that klotho may reduce transient receptor potential canonical6 (TRPC6) channels, resulting in protecting the heart from hypertrophy and systolic dys- function. Fibroblast growth factor23 (FGF23) is a bone-derived hormone that plays an important role in the regulation of phosphate and vi- tamin D metabolism. FGF23 accelerates urinary phosphate excretion and suppresses 1,25-dihydroxy vitaminD3 (1,25(OH)2D3)synthesis in the presence ofFGF receptorl (FGFR1) and its co-receptor ldotho, principally in the kidney. The hormonal affects of circulating klotho pro- tein and FGF23 on vascular and heart have contributed to an understanding of their roles in the pathophysiology of arterial stiffness and left ventricular hypertrophy. Klotho and FGF23 appear to play a critical role in the pathogenesis of vascular disease, and may represent a novel potential therapeutic strategy for clinical intervention.
基金supported by the National Natural Science Foundation of China,No.81070614the Key Project of the Natural Science Foundation of Hubei Province of China,No. 2008CDA044the Natural Science Foundation of Hubei University of Medicine,No.2011QDZR-2
文摘The present study explored the distribution and localization of fibroblast growth factor-8 and its potential receptor, fibroblast growth factor receptor-3, in adult rat brain in vivo and in nerve cells during differentiation of neural stem/progenitor cells in vitro. Immunohistochemistry was used to examine the distribution of fibroblast growth factor-8 in adult rat brain in vivo. Localization of fibroblast growth factor-8 and fibroblast growth factor receptor-3 in cells during neural stem/progenitor cell differentiation in vitro was detected by immunofluorescence. Flow cytometry and immunofluorescence were used to evaluate the effect of an anti-fibroblast growth factor-8 antibody on neural stem/progenitor cell differentiation and expansion in vitro. Results from this study confirmed that fibroblast growth factor-8 was mainly distributed in adult midbrain, namely the substantia nigra, compact part, dorsal tier, substantia nigra and reticular part, but was not detected in the forebrain comprising the caudate putamen and striatum. Unusual results were obtained in retrosplenial locations of adult rat brain. We found that fibroblast growth factor-8 and fibroblast growth factor receptor-3 were distributed on the cell membrane and in the cytoplasm of nerve cells using immunohistochemistry and immunofluorescence analyses. We considered that the distribution of fibroblast growth factor-8 and fibroblast growth factor receptor-3 in neural cells corresponded to the characteristics of fibroblast growth factor-8, a secretory factor. Addition of an anti-fibroblast growth factor-8 antibody to cultures significantly affected the rate of expansion and differentiation of neural stem/progenitor cells. In contrast, addition of recombinant fibroblast growth factor-8 to differentiation medium promoted neural stem/progenitor cell differentiation and increased the final yields of dopaminergic neurons and total neurons. Our study may help delineate the important roles of fibroblast growth factor-8 in brain activities and neural stem/progenitor cell differentiation.
基金supported by the National Science Council(102-2320-B-324-001),Chinaupported by grants from Taipei Veterans General Hospital(V103E6-001&V104E6-001)by grants(MOST 104-2314-B-010-012-MY3,MOST 105-2314-B-010-013-MY2 and MOST 106-2632-B-324-001)from the Ministry of Science and Technology in Taiwan,China
文摘Alternatively activated macrophages (M2 macrophages) promote central nervous system regeneration. Our previous study demonstrated that treatment with peripheral nerve grafts and fibroblast growth factor-1 recruited more M2 macrophages and improved partial functional recovery in spinal cord transected rats. The migration of macrophages is matrix metalloproteinase (MMP) dependent. We used a general inhibitor of MMPs to influence macrophage migration, and we examined the migration of macrophage populations and changes in spinal function. Rat spinal cords were completely transected at Ts, and 5 mm of spinal cord was removed (group T). In group R, spinal cord-transected rats received treatment with fibroblast grow th factor- 1 and peripheral nerve grafts. In group RG, rats received the same treatment as group R with the addition of 200 μM GM6001 (an MMP inhibitor) to the fibrin mix. We found that MMP-9, but not MMP- 2, was upregulated in the graft area of rats in group R. Local application of the MMP inhibitor resulted in a reduction in the ratio of arginase-1 (M2 macrophage subset)/inducible nitric oxide synthase-postive cells. When the MMP inhibitor was applied at 8 weeks postoperation, the partial functional recovery observed in group R was lost. This effect was accompanied by a decrease in brain-derived neurotrophic factor levels in the nerve graft. These results suggested that the arginase-1 positive population in spinal cord transected rats is a migratory cell population rather than the phenotypic conversion of early iNOS^+ cells and that the migration of the arginase-1^+ population could be regulated locally. Simultaneous application of MMP in- hibitors or promotion of MMP activity for spinal cord injury needs to be considered if the coadministered treatment involves M2 recruitment.
文摘There is evidence that the expression of members of the fibroblast growth factor (FGF) protein family is altered in post-mortem brains of humans suffering from major depressive disorder. The present study examined whether the expression of fibroblast growth factor-2 (FGF2) and fibroblast growth factor receptor-1 (FGFR1) protein is altered following chronic stress in an animal model. Rats were exposed to 35 days of chronic unpredictable mild stress, and then tested using open-field and sucrose consumption tests. Compared with the control group, rats in the chronic stress group exhibited obvious depressive-like behaviors, including anhedonia, anxiety and decreased mobility. The results of western blot analysis and immunohistochemical analysis revealed a downregulation of the expression of FGF2 and FGFR1 in the hippocampus of rats, particularly in the CA1, CA3 and dentate gyrus. This decreased expression is in accord with the results of post-mortem studies in humans with major depressive disorder. These findings suggest that FGF2 and FGFR1 proteins participate in the pathophysiology of depressive-like behavior, and may play an important role in the mechanism of chronic stress-induced depression.
文摘Background: Left ventricular hypertrophy (LVH) is a common cardiovascular complication and an independent risk factor for cardiovascular death in hemodialysis (HD) patients. Previous studies have shown that fibroblast growth factor 23 (FGF23), which has an important role in phosphate metabolism, is elevated in HD patients. Objectives: The aim of this study was to determine the association of FGF23 and LVH and the prognostic value of serum FGF23 level in HD patients. One hundred seven HD patients were evaluated for LVH by echocardiography. Serum FGF23 levels were measured using a commercial enzyme-linked immunosorbent assay kit. Results: Patients with LVH were more likely to have higher systolic blood pressure (BP) and LVH was significantly associated with female gender and higher serum levels of phosphate and calcium ×phosphate products. LVH was also associated with higher serum FGF23 level. Multivariate analysis indicated that serum FGF23 level, systolic BP, and serum phosphate level remained correlated with LVH. This suggested that serum FGF23 level is independently associated with LVH in our HD patients. Cox analysis indicated no significant difference in risk of death for patients with elevated serum FGF23 level. Conclusion: LVH has a high prevalence in HD patients, and FGF23 is independently associated with LVH but is not a predictor for prognosis during a 4-year follow-up period.
文摘Objective. This study was to investigate the effects of transforming growth factor-β(TGFβ) and fi- broblast growth factor (FGF) in the subcapsular opacification formation of the lens. Methods. Lens epithelial explants from 10-day-old rats were cultured with TGFβ1 or TGFβ2 in the presence of FGF for 5 days, then were examined by light and electron microscopy, and by immunolocal- ization of smooth muscle(α-sm) actin and type I collagen. Results. In TGFβ/FGF-treated explants,extensive proliferation occured, with formation of spindle and star-shaped cells. These cells showed ultrastructure and biochemical features of fibroblast or myofibroblast. Prominent Golgi apparatus and rough endoplaic reticulum were observed in some cells. Intracellular micro- filaments with cytoplasmic dense babies and membrane associated dense bodies, features of smooth muscle cells, were also observed. Some cells showed reactivity to -sin actin antibody. TGFβ/FGF-treated ex- plants were strongly stained with type I collagen antibody. Condusion. In the presence of FGF, TGFβ1 and TGFβ2 induced lens epithelial cell (LEC ) proliferation and transformation into fibroblast or myofibroblast-like cells, with producing of abundant collagen matrix in the explants. The changes are similar to the metaplasia that occurrs in subcapsular opacification of the lens. The findings suggest that TGFβ and FGF plays a role in the pathogenesis of subcapsular opacification of the lens.
基金the National Natural Science Foundation of China,No.30371459Science and Technology Development Fund of Shanghai,No.034047
文摘BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate signal transduction systems of Ras/MAPK and PI3K/Akl, which promote glioma growth. OBJECTIVE: To utilize RNA interference (RNAi) technique to down-regulate FGF-2, IGF-1, and IGF-1R gene expression, and to investigate the effects of these genes on rat C6 glioma cells, as well as the feasibility of RNAi for treating glioma. DESIGN, TIME AND SETTING: This neurooncological, randomized, controlled, in vivo and in vitro experiment, which used RNAi methodology, was performed at the Laboratory of Molecular Biology, Institute of Biochemistry, Chinese Academy of Sciences between August 2005 and February 2008. MATERIALS: Rat C6 cell lines were purchased from Shanghai Institute of Cellular Biology Affiliated to Chinese Academy of Sciences. Small interfering RNA (siRNA) was synthesized by Shanghai GenePharma. Anti-IGF-1, anti-IGF-1R, anti-FGF-2, anti-mouse and anti-rabbit IgG G1-HRP antibodies were provided by Santa Cruz Biotechnology, USA. Four to six week-old BALB/c nude mice were purchased from the Laboratory Animal Center, Chinese Academy of Sciences. METHODS: C6 glioma cells were transfected with siRNA, which was chemically synthesized in vitro to correspond to endogenous FGF-2, IGF-1, and IGF-1R genes. The inhibition ratio of targeting mRNA expression was detected by semiquantitative RT-PCR, and protein expression was determined by Western blot analysis. C6 glioma cell proliferation was observed using a growth curve C6 glioma cell apoptosis rate and cell cycle were detected by flow cytometry. C6 glioma cell growth regression was observed by transwell migration assay. In addition, nude mouse subcutaneous tumor models were used in this study. For studying the anti-tumor effects of IGF-1 and IGF-1R siRNA, two blank control groups, with six mice each, were set up: A (2.5 μg siRNA was injected one week after C6 cells were inoculated, Le., when tumor volume reached 8 mm × 8 mm) and B (siRNA was injected at the same time with C6 cells were inoculated. To study the effects of FGF-2 siRNA, the groups consisted of a blank control group, negative control group, 2.6 μg siRNA group, 4 μg siRNA group, and 5.3 μg siRNA group, with six mice each. MAIN OUTCOME MEASURES: mRNA and protein inhibition ratio of FGF-2, IGF-1, and IGF-1 R; C6 glioma cell proliferation, apoptosis, and cycle growth arrest; C6 glioma cell growth regression and subcutaneous tumorigenicity rates. RESULTS: All siRNA constructs proved to be effective. After 48 hours, transfection of 200 nmol/L siRNA resulted in a FGF-2 or IGF-1R gene inhibition ratio 〉 80% and an IGF-1 gene inhibition ratio of approximately 70%. Protein expression levels for FGF-2, IGF-1, and IGF-1R decreased in a dose-dependent manner following siRNA transfection, with an inhibition rate 〉 85%, 60%, and 50%, respectively. C6 glioma cell proliferation and apoptosis rates increased in proportion to siRNA. The apoptosis rate of C6 glioma cells induced by FGF-2, IGF-1, and IGF-1R siRNA was 39.96%, 15.07% and 22.47%, respectively (P 〈 0.01). Transfection of 200 nmol/L IGF or IGF-1R siRNA for 48 hours suppressed C6 glioma cell migration. At 30 days after intratumoral injection of 2.6, 4, and 5.3 tJg FGF-2 siRNA, tumor growth regression rate of FGF-2 siRNA was 56%, 67%, and 86%, respectively. The tumor growth regression rate was 71.88% and 45.71%, respectively, when IGF-1 or IGF-1R siRNA was intratumorally injected 1 week after C6 glioma cell transplantation. When IGF-1 or IGF-1 R siRNA was intratumorally injected during C6 glioma cell transplantation, the tumor growth regression rate was 78.13% and 74.29%, respectively. CONCLUSION: siRNA transfection downregulated gene expression of FGF-2, IGF-1, and IGF-1R In addition, siRNA treatment markedly suppressed glioma cell proliferation, growth, and migration, and concomitantly reduced subcutaneous tumorigenicity.
基金Supported by Grants from the Ministerio de Ciencia e Innovación, MICINN, Spain (SAF2009-12477 to Sánchez A BFU2009-07219 and ISCIII-RTICC RD06/0020 to Fabregat I)+1 种基金AGAUR-Generalitat de Catalunya (2009SGR-312 to Fabregat I)UCM-BSCH (920359 to Sánchez A)
文摘Liver is unique in its capacity to regenerate in response to injury or tissue loss. Hepatocytes and other liver cells are able to proliferate and repopulate the liver. However, when this response is impaired, the contribution of hepatic progenitors becomes very relevant. Here, we present an update of recent studies on growth factors and cytokine-driven intracellular pathways that govern liver stem/pro-genitor cell expansion and differentiation, and the rel-evance of these signals in liver development, regeneration and carcinogenesis. Tyrosine kinase receptor signaling, in particular, c-Met, epidermal growth factor receptors or fibroblast growth factor receptors, contribute to prolifera-tion, survival and differentiation of liver stem/progenitor cells. Different evidence suggests a dual role for the trans-forming growth factor (TGF)-β signaling pathway in liver stemness and differentiation. On the one hand, TGF-βmediates progression of differentiation from a progenitor stage, but on the other hand, it contributes to the expan-sion of liver stem cells. Hedgehog family ligands are nec-essary to promote hepatoblast proliferation but need to be shut off to permit subsequent hepatoblast differentiation. In the same line, the Wnt family and β-catenin/T-cell fac-tor pathway is clearly involved in the maintenance of liver stemness phenotype, and its repression is necessary for liver differentiation during development. Collectively, data indicate that liver stem/progenitor cells follow their own rules and regulations. The same signals that are essential for their activation, expansion and differentiation are good candidates to contribute, under adequate conditions, to the paradigm of transformation from a pro-regenerative to a pro-tumorigenic role. From a clinical perspective, this is a fundamental issue for liver stem/progenitor cell-based therapies.