A shortage of courtrooms has long been a challenge in Malawi,especially since more judges were hired to help to streamline the country’s judicial process.Yet,while the current judiciary is headquartered in the countr...A shortage of courtrooms has long been a challenge in Malawi,especially since more judges were hired to help to streamline the country’s judicial process.Yet,while the current judiciary is headquartered in the country’s second-largest city of Blantyre,due to a lack of work space;some sections of the judiciary are located elsewhere,such as the juvenile,commercial and industrial courts.展开更多
We calculate the local energy and the energy density of the Reisner-Norstrom-anti-de-Sitter black hole, study the first law of thermodynamics and show the Smarr formula for the Born-Infeld-anti-de-Sitter black hole. A...We calculate the local energy and the energy density of the Reisner-Norstrom-anti-de-Sitter black hole, study the first law of thermodynamics and show the Smarr formula for the Born-Infeld-anti-de-Sitter black hole. Applying the first law of thermodynamics to the black hole region, we analyse the three energy exchange processes between the black hole region and the outer and the inner regions.展开更多
The first digit law, also known as Benford’s law or the significant digit law, is an empirical phenomenon that the leading digit of numbers from real world sources favors small ones in a form log(1 + 1/d), where d= 1...The first digit law, also known as Benford’s law or the significant digit law, is an empirical phenomenon that the leading digit of numbers from real world sources favors small ones in a form log(1 + 1/d), where d= 1, 2,..., 9.Such a law has been elusive for over 100 years because it has been obscure whether this law is due to the logical consequence of the number system or some mysterious mechanism of nature. We provide a simple and elegant proof of this law from the application of the Laplace transform, which is an important tool of mathematical methods in physics. It is revealed that the first digit law originates from the basic property of the number system, thus it should be attributed as a basic mathematical knowledge for wide applications.展开更多
According to the existing concrete core samples obtained in site, chloride concentration and porosity of existing normal hydraulic concrete were measured, and chloride diffusivity in existing hydraulic concrete was st...According to the existing concrete core samples obtained in site, chloride concentration and porosity of existing normal hydraulic concrete were measured, and chloride diffusivity in existing hydraulic concrete was studied. By Fick’s second law, the chloride diffusion coefficients in the steady diffusion area were calculated. The chloride diffusion of different mix proportion concrete was tested, and chloride diffusion coefficients and porosities of freshly concrete were measured, moreover, the relationship between diffusion coefficient and porosity was analyzed. The results show that the varying law of chloride diffusion coefficient with exposure time of existing concrete can be predicted in a better way by Fick’s second law and water-cement ratios or porosity of concrete and chloride concentration in existing concrete.展开更多
For a black hole with two horizons, the effective entropy is assumed to be a linear combination of the two entropies of the outer and inner horizons. In terms of the effective thermodynamic quantities the effective Be...For a black hole with two horizons, the effective entropy is assumed to be a linear combination of the two entropies of the outer and inner horizons. In terms of the effective thermodynamic quantities the effective Bekenstein-Smarr formula and the effective first law of thermodynamics are derived.展开更多
Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relati...Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relationship between research funding and citations of papers using 831,337 documents recorded in the Web of Science database.Findings:The original results reveal general characteristics of the diffusion of science in research fields:a)Funded articles receive higher citations compared to unfunded papers in journals;b)Funded articles exhibit a super-linear growth in citations,surpassing the increase seen in unfunded articles.This finding reveals a higher diffusion of scientific knowledge in funded articles.Moreover,c)funded articles in both basic and applied sciences demonstrate a similar expected change in citations,equivalent to about 1.23%,when the number of funded papers increases by 1%in journals.This result suggests,for the first time,that funding effect of scientific research is an invariant driver,irrespective of the nature of the basic or applied sciences.Originality/value:This evidence suggests empirical laws of funding for scientific citations that explain the importance of robust funding mechanisms for achieving impactful research outcomes in science and society.These findings here also highlight that funding for scientific research is a critical driving force in supporting citations and the dissemination of scientific knowledge in recorded documents in both basic and applied sciences.Practical implications:This comprehensive result provides a holistic view of the relationship between funding and citation performance in science to guide policymakers and R&D managers with science policies by directing funding to research in promoting the scientific development and higher diffusion of results for the progress of human society.展开更多
Based on the divergence theorem, we reveal that the Fickian first law relevant to the diffusion flux |J(t,x,y,z) > in the time and space is incomplete without an integral constant |J0(t) > for the integral of Fi...Based on the divergence theorem, we reveal that the Fickian first law relevant to the diffusion flux |J(t,x,y,z) > in the time and space is incomplete without an integral constant |J0(t) > for the integral of Fickian second law. The new diffusion flux (NDF) taking it into account shows that we can systematically understand the problems of one-way diffusion, impurity diffusion and self-diffusion as a special case of the interdiffusion. Applying the NDF to the interdiffusion problem between metal plates, it is clarified that the Kirkenkall effect is caused by |J0(t) > and also that the interdiffusion coefficients in alloy can be easily obtained. The interdiffusion problems are reasonably solved regardless of the intrinsic diffusion conception. Thus the NDF to replace the Fickian first law is an essential equation in physics.展开更多
Today’s forensic science introduces a new research area for digital image analysis formultimedia security.So,Image authentication issues have been raised due to the wide use of image manipulation software to obtain a...Today’s forensic science introduces a new research area for digital image analysis formultimedia security.So,Image authentication issues have been raised due to the wide use of image manipulation software to obtain an illegitimate benefit or createmisleading publicity by using tempered images.Exiting forgery detectionmethods can classify only one of the most widely used Copy-Move and splicing forgeries.However,an image can contain one or more types of forgeries.This study has proposed a hybridmethod for classifying Copy-Move and splicing images using texture information of images in the spatial domain.Firstly,images are divided into equal blocks to get scale-invariant features.Weber law has been used for getting texture features,and finally,XGBOOST is used to classify both Copy-Move and splicing forgery.The proposed method classified three types of forgeries,i.e.,splicing,Copy-Move,and healthy.Benchmarked(CASIA 2.0,MICCF200)and RCMFD datasets are used for training and testing.On average,the proposed method achieved 97.3% accuracy on benchmarked datasets and 98.3% on RCMFD datasets by applying 10-fold cross-validation,which is far better than existing methods.展开更多
To satisfy the terminal position and impact angel constraints,an optimal guidance problem was discussed for homing missiles. For a stationary or a slowly moving target on the ground,an extended trajectory shaping guid...To satisfy the terminal position and impact angel constraints,an optimal guidance problem was discussed for homing missiles. For a stationary or a slowly moving target on the ground,an extended trajectory shaping guidance lawconsidering a first-order autopilot lag( ETSG L-C FAL) was proposed. To derive the ETSG L-C FAL,a time-to-go- nth power weighted objection function was adopted and three different derivation methods were demonstrated while the Schwartz inequality method was mainly demonstrated.The performance of the ETSG L-C FAL and the ETSG L guidance laws was compared through simulation.Simulation results showthat although a first-order autopilot is introduced into the ETSG L-C FAL guidance system,the position miss distance and terminal impact angle error induced by the impact angle is zero for different guidance time.展开更多
The internal energy change of ideal gas does not depend on the volume and pressure. The internal energy change of real gas has not any relation with the volume and pressure, which had been proved. If the internal ener...The internal energy change of ideal gas does not depend on the volume and pressure. The internal energy change of real gas has not any relation with the volume and pressure, which had been proved. If the internal energy change had not any relation with the volume and pressure, we could confirm the first law of thermodynamics in theory. Simultaneously, the internal energy change is the state function that shall be able to be proved in theory. If the internal energy change depended on the volume and pressure, we could not prove that the internal energy change is the state function and the chemical thermodynamics theory is right. The extended or modified Bernoulli equation can be derived from the energy conservation law, and the internal energy change, heat, and friction are all considered in the derivation procedure. The extended Bernoulli equation could be applied to the flying aircraft and mechanical motion on the gravitational field, for instance, the rocket and airplane and so on. This paper also revises some wrong ideas, viewpoints, or concepts about the thermodynamics theory and Bernoulli equation.展开更多
Complex sustainability issues in the Anthropocene,with rapid globalization and global environmental changes,are increasingly interlinked between not only nearby systems but also distant systems.Tobler’s first law of ...Complex sustainability issues in the Anthropocene,with rapid globalization and global environmental changes,are increasingly interlinked between not only nearby systems but also distant systems.Tobler’s first law of geog-raphy(TFL)states“near things are more related than distant things”.Evidence suggests that TFL is not infallible for sustainability issues.Recently,the integrated framework of metacoupling(MCF;human-nature interactions within as well as between adjacent and distant systems)has been applied to analyze the interactions between nearby and distant coupled human and natural systems simultaneously.However,previous work has been scat-tered and fragmented.It is crucial to understand the extent to which TFL and MCF apply across pressing issues in sustainability.Therefore,we reviewed and synthesized sustainability literature that used TFL and MCF across seven major topics:land change,species migration,tourism,trade,agricultural development,conservation,and governance.Results indicate MCF had a much broader applicability than TFL for these topics.The literature using MCF generally did not or likely did not obey TFL,especially in trade,governance,and agricultural de-velopment.In the TFL literature,most topics obeyed TFL,except for species migration and trade.The findings suggest the need to rethink and further test TFL’s relevance to sustainability issues,and highlight the potential of MCF to address complex interactions between both adjacent and distant systems across the world for global sustainability.展开更多
The aim of this numerical investigation is to evaluate the laminar forced convection of biologically synthesized water-silver nanofluid through a heat sink(HS)filled with porous foam(PHS)using first and second laws of...The aim of this numerical investigation is to evaluate the laminar forced convection of biologically synthesized water-silver nanofluid through a heat sink(HS)filled with porous foam(PHS)using first and second laws of thermodynamics.The impacts of inlet velocity(V=0.5–3 m·s^-1)and volume fraction of nanofluid(φ=0–1%)on the performance metrics of HS are assessed and the outcomes are compared with those of the non-porous HS(NHS).The outcomes revealed that for both the PHS and NHS,the increase of V causes an intensification in convection coefficient,pumping power,and entropy generation due to fluid friction,while the maximum CPU temperature,thermal resistance,and entropy generation due to the heat transfer reduces by boosting V.Also,it was found that the augmentation of V results in intensification in convection coefficient,pumping power,overall hydrothermal performance,and frictional entropy generation,while the opposite is true for maximum CPU temperature,thermal resistance,and thermal entropy generation.Furthermore,it was reported that,except forφ=0.5%,the overall hydrothermal performance of NHS is better than that of PHS,while PHS has better second-law performance than NHS in all the studied cases.Also,it can be concluded that the best hydrothermal performance for PHS belongs toφ=1%and V=0.5 m·s^-1,while for NHS,these values are 1%and 2 m·s^-1.展开更多
The practical significance of the established generalized differential formula-tion of the first law of thermodynamics (formulated for the rotational coor-dinate system) is evaluated (for the first time and for the me...The practical significance of the established generalized differential formula-tion of the first law of thermodynamics (formulated for the rotational coor-dinate system) is evaluated (for the first time and for the mesoscale oceanic eddies) by deriving the general (viscous-compressible-thermal) and partial (incompressible, viscous-thermal) local conditions of the tidal maintenance of the quasi-stationary energy and dissipative turbulent structure of the mesoscale eddy located inside of the individual fluid region of the ther-mally heterogeneous viscous (compressible and incompressible, respective-ly) heat-conducting stratified fluid over the two-dimensional bottom topog-raphy characterized by the horizontal coordinate x along a horizon-tal axis X. Based on the derived partial (incompressible) local condition (of the tidal maintenance of the quasi-stationary energy and viscous-thermal dis-sipative turbulent structure of the mesoscale eddy) and using the calculated vertical distributions of the mean viscous dissipation rate per unit mass and the mean thermal dissipation rate per unit mass in four regions near the observed mesoscale (periodically topographically trapped by nearly two-dimensional bottom topography h(x) eddy located near the northern region of the Yamato Rise in the Japan Sea, the combined analysis of the energy structure of the eddy and the viscous-thermal dissipative structure of turbulence is presented. The convincing evidence is presented of the tidal mechanism of maintenance of the eddy energy and viscous-thermal dissipa-tive structure of turbulence (produced by the breaking internal gravity waves generated by the eddy) in three regions near the Yamato Rise subjected to the observed mesoscale eddy near the northern region of the Yamato Rise of the Japan Sea.展开更多
An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather condi...An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather conditions.Past theoretical,numerical,and experimental studies on penetrative convection are reviewed,along with field studies providing insights into turbulence modeling.The physical factors that initiate penetrative convection,including internal heat sources,nonlinear constitutive relationships,centrifugal forces and other complicated factors are summarized.Cutting-edge methods for understanding transport mechanisms and statistical properties of penetrative turbulence are also documented,e.g.,the variational approach and quasilinear approach,which derive scaling laws embedded in penetrative turbulence.Exploring these scaling laws in penetrative convection can improve our understanding of large-scale geophysical and astrophysical motions.To better the model of penetrative turbulence towards a practical situation,new directions,e.g.,penetrative convection in spheres,and radiation-forced convection,are proposed.展开更多
Final velocity and impact angle are critical to missile guidance.Computationally efficient guidance law with compre-hensive consideration of the two performance merits is challeng-ing yet remains less addressed.Theref...Final velocity and impact angle are critical to missile guidance.Computationally efficient guidance law with compre-hensive consideration of the two performance merits is challeng-ing yet remains less addressed.Therefore,this paper seeks to solve a type of optimal control problem that maximizes final velocity subject to equality point constraint of impact angle con-straint.It is proved that the crude problem of maximizing final velocity is equivalent to minimizing a quadratic-form cost of cur-vature.The closed-form guidance law is henceforth derived using optimal control theory.The derived analytical guidance law coincides with the widely-used optimal guidance law with impact angle constraint(OGL-IAC)with a set of navigation parameters of two and six.On this basis,the optimal emission angle is determined to further increase the final velocity.The derived optimal value depends solely on the initial line-of-sight angle and impact angle constraint,and thus practical for real-world appli-cations.The proposed guidance law is validated by numerical simulation.The results show that the OGL-IAC is superior to the benchmark guidance laws both in terms of final velocity and missing distance.展开更多
In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results a...In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results apply to all nonlinear scalar conservation laws and to nonlinear hyperbolic systems of two equations.展开更多
In this paper,we investigate the reverse order law for Drazin inverse of three bound-ed linear operators under some commutation relations.Moreover,the Drazin invertibility of sum is also obtained for two bounded linea...In this paper,we investigate the reverse order law for Drazin inverse of three bound-ed linear operators under some commutation relations.Moreover,the Drazin invertibility of sum is also obtained for two bounded linear operators and its expression is presented.展开更多
Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by t...Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by their apparent particle size and structure(density and morphology).Substantial researches have been conducted regarding the effect of floc characteristics on particle settling and water treatment.However,the influence of floc characteristics on flotation has not been widely studied.Based on the floc formation and flocculation flotation,this study reviews the fundamental physical characteristics of flocs from the perspectives of floc particle size and structure,summarizing the interaction between floc particle size and structure.Moreover,it thoroughly discusses the effect of floc particle size and structure on floc floatability,further revealing the influence of floc characteristics on bubble collision and adhesion and elucidating the mechanisms of interaction between flocs and bubbles.Thus,it is observed that floc particle size is not the only factor influencing flocculation flotation.Within the appropriate apparent particle size range,flocs with a compact structure exhibit higher efficiency in bubble collision and adhesion during flotation,thereby resulting in enhanced flotation performance.This study aims to provide a reference for flocculation flotation,targeting the development of more efficient and refined flocculation flotation processes in the future.展开更多
In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy ...In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy in the smooth region and obtain the high resolution solution when the discontinuity appears,and it is compact which will be good for giving the numerical boundary conditions.Furthermore,it avoids complicated least square procedure when we implement the genuine two dimensional(2D)finite volume HWENO reconstruction,and it can be regarded as a generalization of the one dimensional(1D)HWENO method.Extensive numerical tests are performed to verify the high resolution and high accuracy of the scheme.展开更多
文摘A shortage of courtrooms has long been a challenge in Malawi,especially since more judges were hired to help to streamline the country’s judicial process.Yet,while the current judiciary is headquartered in the country’s second-largest city of Blantyre,due to a lack of work space;some sections of the judiciary are located elsewhere,such as the juvenile,commercial and industrial courts.
基金supported by the Liaoning Education Committee of China (Grant No.2009A036)
文摘We calculate the local energy and the energy density of the Reisner-Norstrom-anti-de-Sitter black hole, study the first law of thermodynamics and show the Smarr formula for the Born-Infeld-anti-de-Sitter black hole. Applying the first law of thermodynamics to the black hole region, we analyse the three energy exchange processes between the black hole region and the outer and the inner regions.
基金Supported by the National Natural Science Foundation of China under Grant No 11475006
文摘The first digit law, also known as Benford’s law or the significant digit law, is an empirical phenomenon that the leading digit of numbers from real world sources favors small ones in a form log(1 + 1/d), where d= 1, 2,..., 9.Such a law has been elusive for over 100 years because it has been obscure whether this law is due to the logical consequence of the number system or some mysterious mechanism of nature. We provide a simple and elegant proof of this law from the application of the Laplace transform, which is an important tool of mathematical methods in physics. It is revealed that the first digit law originates from the basic property of the number system, thus it should be attributed as a basic mathematical knowledge for wide applications.
基金Funded by the National Natural Science Foundation of China (No.50879079)Science and Technology Plan Project of Zhejiang Province (No.2007C23058)
文摘According to the existing concrete core samples obtained in site, chloride concentration and porosity of existing normal hydraulic concrete were measured, and chloride diffusivity in existing hydraulic concrete was studied. By Fick’s second law, the chloride diffusion coefficients in the steady diffusion area were calculated. The chloride diffusion of different mix proportion concrete was tested, and chloride diffusion coefficients and porosities of freshly concrete were measured, moreover, the relationship between diffusion coefficient and porosity was analyzed. The results show that the varying law of chloride diffusion coefficient with exposure time of existing concrete can be predicted in a better way by Fick’s second law and water-cement ratios or porosity of concrete and chloride concentration in existing concrete.
文摘For a black hole with two horizons, the effective entropy is assumed to be a linear combination of the two entropies of the outer and inner horizons. In terms of the effective thermodynamic quantities the effective Bekenstein-Smarr formula and the effective first law of thermodynamics are derived.
文摘Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relationship between research funding and citations of papers using 831,337 documents recorded in the Web of Science database.Findings:The original results reveal general characteristics of the diffusion of science in research fields:a)Funded articles receive higher citations compared to unfunded papers in journals;b)Funded articles exhibit a super-linear growth in citations,surpassing the increase seen in unfunded articles.This finding reveals a higher diffusion of scientific knowledge in funded articles.Moreover,c)funded articles in both basic and applied sciences demonstrate a similar expected change in citations,equivalent to about 1.23%,when the number of funded papers increases by 1%in journals.This result suggests,for the first time,that funding effect of scientific research is an invariant driver,irrespective of the nature of the basic or applied sciences.Originality/value:This evidence suggests empirical laws of funding for scientific citations that explain the importance of robust funding mechanisms for achieving impactful research outcomes in science and society.These findings here also highlight that funding for scientific research is a critical driving force in supporting citations and the dissemination of scientific knowledge in recorded documents in both basic and applied sciences.Practical implications:This comprehensive result provides a holistic view of the relationship between funding and citation performance in science to guide policymakers and R&D managers with science policies by directing funding to research in promoting the scientific development and higher diffusion of results for the progress of human society.
文摘Based on the divergence theorem, we reveal that the Fickian first law relevant to the diffusion flux |J(t,x,y,z) > in the time and space is incomplete without an integral constant |J0(t) > for the integral of Fickian second law. The new diffusion flux (NDF) taking it into account shows that we can systematically understand the problems of one-way diffusion, impurity diffusion and self-diffusion as a special case of the interdiffusion. Applying the NDF to the interdiffusion problem between metal plates, it is clarified that the Kirkenkall effect is caused by |J0(t) > and also that the interdiffusion coefficients in alloy can be easily obtained. The interdiffusion problems are reasonably solved regardless of the intrinsic diffusion conception. Thus the NDF to replace the Fickian first law is an essential equation in physics.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R236),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Today’s forensic science introduces a new research area for digital image analysis formultimedia security.So,Image authentication issues have been raised due to the wide use of image manipulation software to obtain an illegitimate benefit or createmisleading publicity by using tempered images.Exiting forgery detectionmethods can classify only one of the most widely used Copy-Move and splicing forgeries.However,an image can contain one or more types of forgeries.This study has proposed a hybridmethod for classifying Copy-Move and splicing images using texture information of images in the spatial domain.Firstly,images are divided into equal blocks to get scale-invariant features.Weber law has been used for getting texture features,and finally,XGBOOST is used to classify both Copy-Move and splicing forgery.The proposed method classified three types of forgeries,i.e.,splicing,Copy-Move,and healthy.Benchmarked(CASIA 2.0,MICCF200)and RCMFD datasets are used for training and testing.On average,the proposed method achieved 97.3% accuracy on benchmarked datasets and 98.3% on RCMFD datasets by applying 10-fold cross-validation,which is far better than existing methods.
基金Supported by the National Natural Science Foundation of China(61172182)
文摘To satisfy the terminal position and impact angel constraints,an optimal guidance problem was discussed for homing missiles. For a stationary or a slowly moving target on the ground,an extended trajectory shaping guidance lawconsidering a first-order autopilot lag( ETSG L-C FAL) was proposed. To derive the ETSG L-C FAL,a time-to-go- nth power weighted objection function was adopted and three different derivation methods were demonstrated while the Schwartz inequality method was mainly demonstrated.The performance of the ETSG L-C FAL and the ETSG L guidance laws was compared through simulation.Simulation results showthat although a first-order autopilot is introduced into the ETSG L-C FAL guidance system,the position miss distance and terminal impact angle error induced by the impact angle is zero for different guidance time.
文摘The internal energy change of ideal gas does not depend on the volume and pressure. The internal energy change of real gas has not any relation with the volume and pressure, which had been proved. If the internal energy change had not any relation with the volume and pressure, we could confirm the first law of thermodynamics in theory. Simultaneously, the internal energy change is the state function that shall be able to be proved in theory. If the internal energy change depended on the volume and pressure, we could not prove that the internal energy change is the state function and the chemical thermodynamics theory is right. The extended or modified Bernoulli equation can be derived from the energy conservation law, and the internal energy change, heat, and friction are all considered in the derivation procedure. The extended Bernoulli equation could be applied to the flying aircraft and mechanical motion on the gravitational field, for instance, the rocket and airplane and so on. This paper also revises some wrong ideas, viewpoints, or concepts about the thermodynamics theory and Bernoulli equation.
基金We thank the National Science Foundation(Grants No.1924111,2033507 and 2118329)Michigan AgBioResearch for financial support.
文摘Complex sustainability issues in the Anthropocene,with rapid globalization and global environmental changes,are increasingly interlinked between not only nearby systems but also distant systems.Tobler’s first law of geog-raphy(TFL)states“near things are more related than distant things”.Evidence suggests that TFL is not infallible for sustainability issues.Recently,the integrated framework of metacoupling(MCF;human-nature interactions within as well as between adjacent and distant systems)has been applied to analyze the interactions between nearby and distant coupled human and natural systems simultaneously.However,previous work has been scat-tered and fragmented.It is crucial to understand the extent to which TFL and MCF apply across pressing issues in sustainability.Therefore,we reviewed and synthesized sustainability literature that used TFL and MCF across seven major topics:land change,species migration,tourism,trade,agricultural development,conservation,and governance.Results indicate MCF had a much broader applicability than TFL for these topics.The literature using MCF generally did not or likely did not obey TFL,especially in trade,governance,and agricultural de-velopment.In the TFL literature,most topics obeyed TFL,except for species migration and trade.The findings suggest the need to rethink and further test TFL’s relevance to sustainability issues,and highlight the potential of MCF to address complex interactions between both adjacent and distant systems across the world for global sustainability.
文摘The aim of this numerical investigation is to evaluate the laminar forced convection of biologically synthesized water-silver nanofluid through a heat sink(HS)filled with porous foam(PHS)using first and second laws of thermodynamics.The impacts of inlet velocity(V=0.5–3 m·s^-1)and volume fraction of nanofluid(φ=0–1%)on the performance metrics of HS are assessed and the outcomes are compared with those of the non-porous HS(NHS).The outcomes revealed that for both the PHS and NHS,the increase of V causes an intensification in convection coefficient,pumping power,and entropy generation due to fluid friction,while the maximum CPU temperature,thermal resistance,and entropy generation due to the heat transfer reduces by boosting V.Also,it was found that the augmentation of V results in intensification in convection coefficient,pumping power,overall hydrothermal performance,and frictional entropy generation,while the opposite is true for maximum CPU temperature,thermal resistance,and thermal entropy generation.Furthermore,it was reported that,except forφ=0.5%,the overall hydrothermal performance of NHS is better than that of PHS,while PHS has better second-law performance than NHS in all the studied cases.Also,it can be concluded that the best hydrothermal performance for PHS belongs toφ=1%and V=0.5 m·s^-1,while for NHS,these values are 1%and 2 m·s^-1.
文摘The practical significance of the established generalized differential formula-tion of the first law of thermodynamics (formulated for the rotational coor-dinate system) is evaluated (for the first time and for the mesoscale oceanic eddies) by deriving the general (viscous-compressible-thermal) and partial (incompressible, viscous-thermal) local conditions of the tidal maintenance of the quasi-stationary energy and dissipative turbulent structure of the mesoscale eddy located inside of the individual fluid region of the ther-mally heterogeneous viscous (compressible and incompressible, respective-ly) heat-conducting stratified fluid over the two-dimensional bottom topog-raphy characterized by the horizontal coordinate x along a horizon-tal axis X. Based on the derived partial (incompressible) local condition (of the tidal maintenance of the quasi-stationary energy and viscous-thermal dis-sipative turbulent structure of the mesoscale eddy) and using the calculated vertical distributions of the mean viscous dissipation rate per unit mass and the mean thermal dissipation rate per unit mass in four regions near the observed mesoscale (periodically topographically trapped by nearly two-dimensional bottom topography h(x) eddy located near the northern region of the Yamato Rise in the Japan Sea, the combined analysis of the energy structure of the eddy and the viscous-thermal dissipative structure of turbulence is presented. The convincing evidence is presented of the tidal mechanism of maintenance of the eddy energy and viscous-thermal dissipa-tive structure of turbulence (produced by the breaking internal gravity waves generated by the eddy) in three regions near the Yamato Rise subjected to the observed mesoscale eddy near the northern region of the Yamato Rise of the Japan Sea.
基金supported by the Heilongjiang Touyan Innovative Program Teammade possible through the generous support of the NSFC (Grant No. 52176065)the Fundamental Research Funds for the Central Universities(Grant No. 2022FRFK060022)
文摘An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather conditions.Past theoretical,numerical,and experimental studies on penetrative convection are reviewed,along with field studies providing insights into turbulence modeling.The physical factors that initiate penetrative convection,including internal heat sources,nonlinear constitutive relationships,centrifugal forces and other complicated factors are summarized.Cutting-edge methods for understanding transport mechanisms and statistical properties of penetrative turbulence are also documented,e.g.,the variational approach and quasilinear approach,which derive scaling laws embedded in penetrative turbulence.Exploring these scaling laws in penetrative convection can improve our understanding of large-scale geophysical and astrophysical motions.To better the model of penetrative turbulence towards a practical situation,new directions,e.g.,penetrative convection in spheres,and radiation-forced convection,are proposed.
文摘Final velocity and impact angle are critical to missile guidance.Computationally efficient guidance law with compre-hensive consideration of the two performance merits is challeng-ing yet remains less addressed.Therefore,this paper seeks to solve a type of optimal control problem that maximizes final velocity subject to equality point constraint of impact angle con-straint.It is proved that the crude problem of maximizing final velocity is equivalent to minimizing a quadratic-form cost of cur-vature.The closed-form guidance law is henceforth derived using optimal control theory.The derived analytical guidance law coincides with the widely-used optimal guidance law with impact angle constraint(OGL-IAC)with a set of navigation parameters of two and six.On this basis,the optimal emission angle is determined to further increase the final velocity.The derived optimal value depends solely on the initial line-of-sight angle and impact angle constraint,and thus practical for real-world appli-cations.The proposed guidance law is validated by numerical simulation.The results show that the OGL-IAC is superior to the benchmark guidance laws both in terms of final velocity and missing distance.
文摘In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results apply to all nonlinear scalar conservation laws and to nonlinear hyperbolic systems of two equations.
基金supported by the NNSF of China(12261065)the NSF of Inner Mongolia(2022MS01005)+1 种基金the Basic Science Research Fund of the Universities Directly under the Inner Mongolia Autonomous Re-gion(JY20220084)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(NMGIRT2317).
文摘In this paper,we investigate the reverse order law for Drazin inverse of three bound-ed linear operators under some commutation relations.Moreover,the Drazin invertibility of sum is also obtained for two bounded linear operators and its expression is presented.
基金financially supported by the National Natural Science Foundation of China(Nos.52174239 and 52204284)。
文摘Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by their apparent particle size and structure(density and morphology).Substantial researches have been conducted regarding the effect of floc characteristics on particle settling and water treatment.However,the influence of floc characteristics on flotation has not been widely studied.Based on the floc formation and flocculation flotation,this study reviews the fundamental physical characteristics of flocs from the perspectives of floc particle size and structure,summarizing the interaction between floc particle size and structure.Moreover,it thoroughly discusses the effect of floc particle size and structure on floc floatability,further revealing the influence of floc characteristics on bubble collision and adhesion and elucidating the mechanisms of interaction between flocs and bubbles.Thus,it is observed that floc particle size is not the only factor influencing flocculation flotation.Within the appropriate apparent particle size range,flocs with a compact structure exhibit higher efficiency in bubble collision and adhesion during flotation,thereby resulting in enhanced flotation performance.This study aims to provide a reference for flocculation flotation,targeting the development of more efficient and refined flocculation flotation processes in the future.
基金supported by the NSFC grant 12101128supported by the NSFC grant 12071392.
文摘In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy in the smooth region and obtain the high resolution solution when the discontinuity appears,and it is compact which will be good for giving the numerical boundary conditions.Furthermore,it avoids complicated least square procedure when we implement the genuine two dimensional(2D)finite volume HWENO reconstruction,and it can be regarded as a generalization of the one dimensional(1D)HWENO method.Extensive numerical tests are performed to verify the high resolution and high accuracy of the scheme.