The application of the vector magnetometry based on nitrogen-vacancy(NV)ensembles has been widely investigatedin multiple areas.It has the superiority of high sensitivity and high stability in ambient conditions with ...The application of the vector magnetometry based on nitrogen-vacancy(NV)ensembles has been widely investigatedin multiple areas.It has the superiority of high sensitivity and high stability in ambient conditions with microscale spatialresolution.However,a bias magnetic field is necessary to fully separate the resonance lines of optically detected magneticresonance(ODMR)spectrum of NV ensembles.This brings disturbances in samples being detected and limits the rangeof application.Here,we demonstrate a method of vector magnetometry in zero bias magnetic field using NV ensembles.By utilizing the anisotropy property of fluorescence excited from NV centers,we analyzed the ODMR spectrum of NVensembles under various polarized angles of excitation laser in zero bias magnetic field with a quantitative numerical modeland reconstructed the magnetic field vector.The minimum magnetic field modulus that can be resolved accurately is downto~0.64 G theoretically depending on the ODMR spectral line width(1.8 MHz),and~2 G experimentally due to noisesin fluorescence signals and errors in calibration.By using 13C purified and low nitrogen concentration diamond combinedwith improving calibration of unknown parameters,the ODMR spectral line width can be further decreased below 0.5 MHz,corresponding to~0.18 G minimum resolvable magnetic field modulus.展开更多
The propagation of an elastic wave(EW)in a piezoelectric semiconductor(PSC)subjected to static biasing fields is investigated.It is found that there exist two coupling waves between electric field and charge carriers....The propagation of an elastic wave(EW)in a piezoelectric semiconductor(PSC)subjected to static biasing fields is investigated.It is found that there exist two coupling waves between electric field and charge carriers.One is stimulated by the action of the polarized electric field in the EW-front on charge carriers(EFC),and the other is stimulated by the action of initial electric field in biasing fields on dynamic carriers(IEC).Obviously,the latter is a man-made and tunable wave-carrier interaction.A careful study shows that IEC can play a leading role in remaking dynamic performance of the wave-front and an inter-medium role in transferring energy from biasing fields to EW-fronts.Hence,a method is proposed to reform the EW performance by biasing-fields:reforming the dispersivity of EW-fronts by promoting competition between IEC and EFC and inverting the dissipation by the IEC to transfer energy from biasing fields to EWfronts.The corresponding tuning laws on the phase-frequency characteristics of an EW show that the wave velocity can be regulated smaller than the pure EW velocity at a lowfrequency and larger than the pure piezoelectric wave velocity at a high-frequency.As for regulating the amplitude-frequency characteristics of the EW by the IEC,analyses show that EWs can obtain amplification only for those with relatively high vibration frequencies(small wave lengths).The studies will provide guidance for theoretical analysis of waves propagating in PSCs and practical application and design of piezotronic devices.展开更多
The authors have developed a two-dimensional model for the extension and flexure response of electroelastic plates under biasing fields in a curvilinear coordinate system. Applications of the model in analyzing buckli...The authors have developed a two-dimensional model for the extension and flexure response of electroelastic plates under biasing fields in a curvilinear coordinate system. Applications of the model in analyzing buckling of two circular piezoelectric plates, one single-layered and the other double-layered, are included. The analysis indicates that the piezoelectric coupling has a strengthening effect against buckling.展开更多
The exchange bias field of NiFe/FeMn films with Ta/ Cu buffer was proved tobe lower than that of the films with Ta buffer. The crystallographic texture, surface roughness andelements distribution were examined in thes...The exchange bias field of NiFe/FeMn films with Ta/ Cu buffer was proved tobe lower than that of the films with Ta buffer. The crystallographic texture, surface roughness andelements distribution were examined in these two sets of samples, and there is no apparentdifference for the texture and roughness. However, the segregation of Cu atoms above NiFe surface inthe multilayer of Ta/Cu/NiFe has been observed by using the angle-resolved X-ray photoelectronspectroscopy (XPS). The decrease of the exchange bias field for NiFe/FeMn films with Ta/ Cu bufferlayers is mainly caused by the Cu atoms segregation at the interface between NiFe and FeMn.展开更多
Constitutive relations for nonlinear, isotropic, electroelastic solids quadratic in the ?nite strain tensor and the referential electric ?eld are derived from the full nonlinearity theory of electroelasticity ...Constitutive relations for nonlinear, isotropic, electroelastic solids quadratic in the ?nite strain tensor and the referential electric ?eld are derived from the full nonlinearity theory of electroelasticity by tensor invariants, which can describe the behavior of electrostrictive ma- terials. The equations are linearized for small, dynamic ?elds superposed on ?nite, static biased ?elds. These linear equations are used to study plane waves propagating in an electroelastic body under various mechanical and/or electric biased ?elds. It is shown that the speed of the acoustic waves exhibits a strong dependence upon those material parameters in the nonlinear constitu- tive relations. Experimental determination of these material parameters using this dependence is discussed.展开更多
A multilayered spin valve film with a structure of Ta(5 nm)/Co_(75)Fe_(25)(5 nm)/Cu(2.5 nm)/Co_(75)Fe_(25)(5 nm)/Ir_(20)Mn_(80)(12 nm)/Ta(8 nm)is prepared by the high-vacuum direct current(DC)magnetron sputtering.The ...A multilayered spin valve film with a structure of Ta(5 nm)/Co_(75)Fe_(25)(5 nm)/Cu(2.5 nm)/Co_(75)Fe_(25)(5 nm)/Ir_(20)Mn_(80)(12 nm)/Ta(8 nm)is prepared by the high-vacuum direct current(DC)magnetron sputtering.The effect of temperature on the spin valve structure and the magnetic properties are studied by x-ray diffraction(XRD),atomic force microscopy(AFM),and vibrating sample magnetometry.The effect of temperature on the exchange bias field thermomagnetic properties of multilayered spin valve is studied by the residence time of samples in a reverse saturation field.The results show that as the temperature increases,the IrMn(111)texture weakens,surface/interface roughness increases,and the exchange bias field decreases.Below 200℃,the exchange bias field decreases with the residence time increasing,and at the beginning of the negative saturation field,the exchange bias field Hex decreases first quickly and then slowly gradually.When the temperature is greater than 200℃,the exchange bias field is unchanged with the residence time increasing.展开更多
A theoretical model was proposed to describe the effects of external bias electric field on terahertz(THz)generated in air plasma.The model predicted that for a plasma in a bias electric field,the amplification effect...A theoretical model was proposed to describe the effects of external bias electric field on terahertz(THz)generated in air plasma.The model predicted that for a plasma in a bias electric field,the amplification effect of the THz wave intensity increases with the increase of the excitation laser wavelength.We experimentally observed the relationship between the THz enhancement effect and the electric field strength at different wavelengths.Experimental results showed a good agreement with the model predictions.These results enhance our understanding of the physical mechanism by which femtosecond lasers excite air to generate THz and extend the practical applications of THz generation and modulation.展开更多
Based on the single biasing electrode experiments to optimize the confinement of plasma in the device of KT-5C tokamak, dual-biasing electrodes were inserted into the KT5C plasma for the first time to explore the enha...Based on the single biasing electrode experiments to optimize the confinement of plasma in the device of KT-5C tokamak, dual-biasing electrodes were inserted into the KT5C plasma for the first time to explore the enhancing effects of biasing and the mechanisms of the biasing. By means of applying different combinations of biasing voltages onto the dual electrodes, the changes of Er, which are the key factor for boosting up the Er × B flow shear, were observed. The time evolution showed that the inner electrode played a major role in dual-biasing, which drew larger current than the outer one. The outer electrode produced little influence. It turned out that the dual-biasing electrodes were as effective as a single one in improving the plasma confinement, for the mechanism of biasing was essentially an edge effect.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2021YFB3202800 and 2023YF0718400)Chinese Academy of Sciences(Grant No.ZDZBGCH2021002)+2 种基金Chinese Academy of Sciences(Grant No.GJJSTD20200001)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0303204)Anhui Initiative in Quantum Information Technologies,USTC Tang Scholar,and the Fundamental Research Funds for the Central Universities.
文摘The application of the vector magnetometry based on nitrogen-vacancy(NV)ensembles has been widely investigatedin multiple areas.It has the superiority of high sensitivity and high stability in ambient conditions with microscale spatialresolution.However,a bias magnetic field is necessary to fully separate the resonance lines of optically detected magneticresonance(ODMR)spectrum of NV ensembles.This brings disturbances in samples being detected and limits the rangeof application.Here,we demonstrate a method of vector magnetometry in zero bias magnetic field using NV ensembles.By utilizing the anisotropy property of fluorescence excited from NV centers,we analyzed the ODMR spectrum of NVensembles under various polarized angles of excitation laser in zero bias magnetic field with a quantitative numerical modeland reconstructed the magnetic field vector.The minimum magnetic field modulus that can be resolved accurately is downto~0.64 G theoretically depending on the ODMR spectral line width(1.8 MHz),and~2 G experimentally due to noisesin fluorescence signals and errors in calibration.By using 13C purified and low nitrogen concentration diamond combinedwith improving calibration of unknown parameters,the ODMR spectral line width can be further decreased below 0.5 MHz,corresponding to~0.18 G minimum resolvable magnetic field modulus.
基金Project supported by the National Natural Science Foundation of China(Nos.12232007,12102141,U21A20430,and 11972164)the Chinese Postdoctoral Science Foundation(No.2022M711252)。
文摘The propagation of an elastic wave(EW)in a piezoelectric semiconductor(PSC)subjected to static biasing fields is investigated.It is found that there exist two coupling waves between electric field and charge carriers.One is stimulated by the action of the polarized electric field in the EW-front on charge carriers(EFC),and the other is stimulated by the action of initial electric field in biasing fields on dynamic carriers(IEC).Obviously,the latter is a man-made and tunable wave-carrier interaction.A careful study shows that IEC can play a leading role in remaking dynamic performance of the wave-front and an inter-medium role in transferring energy from biasing fields to EW-fronts.Hence,a method is proposed to reform the EW performance by biasing-fields:reforming the dispersivity of EW-fronts by promoting competition between IEC and EFC and inverting the dissipation by the IEC to transfer energy from biasing fields to EWfronts.The corresponding tuning laws on the phase-frequency characteristics of an EW show that the wave velocity can be regulated smaller than the pure EW velocity at a lowfrequency and larger than the pure piezoelectric wave velocity at a high-frequency.As for regulating the amplitude-frequency characteristics of the EW by the IEC,analyses show that EWs can obtain amplification only for those with relatively high vibration frequencies(small wave lengths).The studies will provide guidance for theoretical analysis of waves propagating in PSCs and practical application and design of piezotronic devices.
基金the National Natural Science Foundation of China(No.10172036)the Office of US Naval Research(Contract No.ONR N00014-96-1-0884)
文摘The authors have developed a two-dimensional model for the extension and flexure response of electroelastic plates under biasing fields in a curvilinear coordinate system. Applications of the model in analyzing buckling of two circular piezoelectric plates, one single-layered and the other double-layered, are included. The analysis indicates that the piezoelectric coupling has a strengthening effect against buckling.
文摘The exchange bias field of NiFe/FeMn films with Ta/ Cu buffer was proved tobe lower than that of the films with Ta buffer. The crystallographic texture, surface roughness andelements distribution were examined in these two sets of samples, and there is no apparentdifference for the texture and roughness. However, the segregation of Cu atoms above NiFe surface inthe multilayer of Ta/Cu/NiFe has been observed by using the angle-resolved X-ray photoelectronspectroscopy (XPS). The decrease of the exchange bias field for NiFe/FeMn films with Ta/ Cu bufferlayers is mainly caused by the Cu atoms segregation at the interface between NiFe and FeMn.
基金Project supported by the Office of Naval Research under contract number ONR N00014-96-1-0884the NationalNatural Science Foundation of China(No.10172036).
文摘Constitutive relations for nonlinear, isotropic, electroelastic solids quadratic in the ?nite strain tensor and the referential electric ?eld are derived from the full nonlinearity theory of electroelasticity by tensor invariants, which can describe the behavior of electrostrictive ma- terials. The equations are linearized for small, dynamic ?elds superposed on ?nite, static biased ?elds. These linear equations are used to study plane waves propagating in an electroelastic body under various mechanical and/or electric biased ?elds. It is shown that the speed of the acoustic waves exhibits a strong dependence upon those material parameters in the nonlinear constitu- tive relations. Experimental determination of these material parameters using this dependence is discussed.
基金supported by the Yunnan Provincial Ten Thousand Talents Plan Young Talents Training Fund,China(Grant No.KKRD201952029)the Applied Basic Research Program of Yunnan Province,China(Grant No.2011FB037)the School Talent Cultivation Foundation,China(Grant No.KKSY201252017)。
文摘A multilayered spin valve film with a structure of Ta(5 nm)/Co_(75)Fe_(25)(5 nm)/Cu(2.5 nm)/Co_(75)Fe_(25)(5 nm)/Ir_(20)Mn_(80)(12 nm)/Ta(8 nm)is prepared by the high-vacuum direct current(DC)magnetron sputtering.The effect of temperature on the spin valve structure and the magnetic properties are studied by x-ray diffraction(XRD),atomic force microscopy(AFM),and vibrating sample magnetometry.The effect of temperature on the exchange bias field thermomagnetic properties of multilayered spin valve is studied by the residence time of samples in a reverse saturation field.The results show that as the temperature increases,the IrMn(111)texture weakens,surface/interface roughness increases,and the exchange bias field decreases.Below 200℃,the exchange bias field decreases with the residence time increasing,and at the beginning of the negative saturation field,the exchange bias field Hex decreases first quickly and then slowly gradually.When the temperature is greater than 200℃,the exchange bias field is unchanged with the residence time increasing.
基金Natural Science Foundation of Beijing,China(Grant No.JQ18015),the National Natural Science Foundation of China(Grant Nos.61935001 and 61905271).
文摘A theoretical model was proposed to describe the effects of external bias electric field on terahertz(THz)generated in air plasma.The model predicted that for a plasma in a bias electric field,the amplification effect of the THz wave intensity increases with the increase of the excitation laser wavelength.We experimentally observed the relationship between the THz enhancement effect and the electric field strength at different wavelengths.Experimental results showed a good agreement with the model predictions.These results enhance our understanding of the physical mechanism by which femtosecond lasers excite air to generate THz and extend the practical applications of THz generation and modulation.
基金supported by the Chinese Ministry of Education,the Chinese National Natural Science Foundation(Grant Nos.1023 5010 and 1033 5060)grants from the Chinese Academy of Sciences and by the JSPS-CAS Core University Program in the field of Plasma and Nuclear Fusion.
文摘Based on the single biasing electrode experiments to optimize the confinement of plasma in the device of KT-5C tokamak, dual-biasing electrodes were inserted into the KT5C plasma for the first time to explore the enhancing effects of biasing and the mechanisms of the biasing. By means of applying different combinations of biasing voltages onto the dual electrodes, the changes of Er, which are the key factor for boosting up the Er × B flow shear, were observed. The time evolution showed that the inner electrode played a major role in dual-biasing, which drew larger current than the outer one. The outer electrode produced little influence. It turned out that the dual-biasing electrodes were as effective as a single one in improving the plasma confinement, for the mechanism of biasing was essentially an edge effect.