Soil surface roughness, denoted by the root mean square height(RMSH), and soil moisture(SM) are critical factors that affect the accuracy of quantitative remote sensing research due to their combined influence on spec...Soil surface roughness, denoted by the root mean square height(RMSH), and soil moisture(SM) are critical factors that affect the accuracy of quantitative remote sensing research due to their combined influence on spectral reflectance(SR). In regards to this issue, three SM levels and four RMSH levels were artificially designed in this study; a total of 12 plots was used, each plot had a size of 3 m × 3 m. Eight spectral observations were conducted from 14 to 30 October 2017 to investigate the correlation between RMSH, SM, and SR. On this basis, 6 commonly used bands of optical satellite sensors were selected in this study, which are red(675 nm), green(555 nm), blue(485 nm), near infrared(845 nm), shortwave infrared 1(1600 nm), and shortwave infrared 2(2200 nm). A negative correlation was found between SR and RMSH, and between SR and SM. The bands with higher coefficient of determination R^2 values were selected for stepwise multiple nonlinear regression analysis. Four characterized bands(i.e., blue, green, near infrared, and shortwave infrared 2) were chosen as the independent variables to estimate SM with R^2 and root mean square error(RMSE) values equal to 0.62 and 2.6%, respectively. Similarly, the four bands(green, red, near infrared, and shortwave infrared 1) were used to estimate RMSH with R^2 and RMSE values equal to 0.48 and 0.69 cm, respectively. These results indicate that the method used is not only suitable for estimating SM but can also be extended to the prediction of RMSH. Finally, the evaluation approach presented in this paper highly restores the real situation of the natural farmland surface on the one hand, and obtains high precision values of SM and RMSH on the other. The method can be further applied to the prediction of farmland SM and RMSH based on satellite and unmanned aerial vehicle(UAV) optical imagery.展开更多
Regulation of gonadal function by gonadotropic hormone (GtH) and gonadotropin-releasing hormone (GnRH) in Channa punctatus was significantly affected by nonlethal levels of Metacid-50 and Carbaryl. Under laboratory co...Regulation of gonadal function by gonadotropic hormone (GtH) and gonadotropin-releasing hormone (GnRH) in Channa punctatus was significantly affected by nonlethal levels of Metacid-50 and Carbaryl. Under laboratory conditions, the time-dependent decrease in serum GtH level was higher in Carbaryl-treated fish than in Metacid-50-treated fish. The situation was reversed in the field, with a higher inhibitory effect of Metacid-50 being recorded. On the other hand, pituitary GtH content and GnRH activity were inhibited to a greater extent by Metacid-50 than by Carbaryl under both field and laboratory conditions. The present findings highlight that even low doses of Metacid-50 and Carbaryl are effective enough to cause reproductive damage, as evidenced by homeostatic unbalance of the reproductive regulatory system. 1990 Academic Press. Inc.展开更多
This study was carried out to assess the growth characteristics of Grewia moll&, Grewia tenax and Grewia villosa under the nursery and field conditions. Two experiments were conducted at the farm of the College of Na...This study was carried out to assess the growth characteristics of Grewia moll&, Grewia tenax and Grewia villosa under the nursery and field conditions. Two experiments were conducted at the farm of the College of Natural Resources and Environmental Studies, University of Juba, Khartoum, Sudan. Randomized complete block design with three replications was used. Morphological and physiological factors were measured. Seedlings height, number of leaves, number of branches and sub-branches were different (P 〈 0.05) among the three species at the nursery stage and under field conditions. Collar diameter showed significant difference among the species under field conditions. Physiological factors exhibited more significant variations in the field than at the nursery stage. Variations in growth characteristics were attributed to genetics differences and different growth habit, while variations in physiological factors (photosynthesis and transpiration rate) were attributed to differences in leaf structure, size and number of stomatal pores.展开更多
The shear behavior of large-scale weak intercalation shear zones(WISZs)often governs the stability of foundations,rock slopes,and underground structures.However,due to their wide distribution,undulating morphology,com...The shear behavior of large-scale weak intercalation shear zones(WISZs)often governs the stability of foundations,rock slopes,and underground structures.However,due to their wide distribution,undulating morphology,complex fabrics,and varying degrees of contact states,characterizing the shear behavior of natural and complex large-scale WISZs precisely is challenging.This study proposes an analytical method to address this issue,based on geological fieldwork and relevant experimental results.The analytical method utilizes the random field theory and Kriging interpolation technique to simplify the spatial uncertainties of the structural and fabric features for WISZs into the spatial correlation and variability of their mechanical parameters.The Kriging conditional random field of the friction angle of WISZs is embedded in the discrete element software 3DEC,enabling activation analysis of WISZ C2 in the underground caverns of the Baihetan hydropower station.The results indicate that the activation scope of WISZ C2 induced by the excavation of underground caverns is approximately 0.5e1 times the main powerhouse span,showing local activation.Furthermore,the overall safety factor of WISZ C2 follows a normal distribution with an average value of 3.697.展开更多
Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method takes shallow ...Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method takes shallow syntactic parsing as the foundation, phrases or named entities as the labeled units, and the CRFs model is trained to label the predicates' semantic roles in a sentence. The key of the method is parameter estimation and feature selection for the CRFs model. The L-BFGS algorithm was employed for parameter estimation, and three category features: features based on sentence constituents, features based on predicate, and predicate-constituent features as a set of features for the model were selected. Evaluation on the datasets of CoNLL-2005 SRL shared task shows that the method can obtain better performance than the maximum entropy model, and can achieve 80. 43 % precision and 63. 55 % recall for semantic role labeling.展开更多
The use of hidden conditional random fields (HCRFs) for tone modeling is explored. The tone recognition performance is improved using HCRFs by taking advantage of intra-syllable dynamic, inter-syllable dynamic and d...The use of hidden conditional random fields (HCRFs) for tone modeling is explored. The tone recognition performance is improved using HCRFs by taking advantage of intra-syllable dynamic, inter-syllable dynamic and duration features. When the tone model is integrated into continuous speech recognition, the discriminative model weight training (DMWT) is proposed. Acoustic and tone scores are scaled by model weights discriminatively trained by the minimum phone error (MPE) criterion. Two schemes of weight training are evaluated and a smoothing technique is used to make training robust to overtraining problem. Experiments show that the accuracies of tone recognition and large vocabulary continuous speech recognition (LVCSR) can be improved by the HCRFs based tone model. Compared with the global weight scheme, continuous speech recognition can be improved by the discriminative trained weight combinations.展开更多
Rockhead profile is an important part of geological profiles and can have significant impacts on some geotechnical engineering practice,and thus,it is necessary to establish a useful method to reverse the rockhead pro...Rockhead profile is an important part of geological profiles and can have significant impacts on some geotechnical engineering practice,and thus,it is necessary to establish a useful method to reverse the rockhead profile using site investigation results.As a general method to reflect the spatial distribution of geo-material properties based on field measurements,the conditional random field(CRF)was improved in this paper to simulate rockhead profiles.Besides,in geotechnical engineering practice,measurements are generally limited due to the limitations of budget and time so that the estimation of the mean value can have uncertainty to some extent.As the Bayesian theory can effectively combine the measurements and prior information to deal with uncertainty,CRF was implemented with the aid of the Bayesian framework in this study.More importantly,this simulation procedure is achieved as an analytical solution to avoid the time-consuming sampling work.The results show that the proposed method can provide a reasonable estimation about the rockhead depth at various locations against measurement data and as a result,the subjectivity in determining prior mean can be minimized.Finally,both the measurement data and selection of hyper-parameters in the proposed method can affect the simulated rockhead profiles,while the influence of the latter is less significant than that of the former.展开更多
With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service respons...With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service response provision.Knowledge graphs are usually constructed based on entity recognition.Specifically,based on the mining of entity attributes and relationships,domain knowledge graphs can be constructed through knowledge fusion.In this work,the entities and characteristics of power entity recognition are analyzed,the mechanism of entity recognition is clarified,and entity recognition techniques are analyzed in the context of the power domain.Power entity recognition based on the conditional random fields (CRF) and bidirectional long short-term memory (BLSTM) models is investigated,and the two methods are comparatively analyzed.The results indicated that the CRF model,with an accuracy of 83%,can better identify the power entities compared to the BLSTM.The CRF approach can thus be applied to the entity extraction for knowledge graph construction in the power field.展开更多
Named entity recognition is a fundamental task in biomedical data mining. In this letter, a named entity recognition system based on CRFs (Conditional Random Fields) for biomedical texts is presented. The system mak...Named entity recognition is a fundamental task in biomedical data mining. In this letter, a named entity recognition system based on CRFs (Conditional Random Fields) for biomedical texts is presented. The system makes extensive use of a diverse set of features, including local features, full text features and external resource features. All features incorporated in this system are described in detail, and the impacts of different feature sets on the performance of the system are evaluated. In order to improve the performance of system, post-processing modules are exploited to deal with the abbreviation phenomena, cascaded named entity and boundary errors identification. Evaluation on this system proved that the feature selection has important impact on the system performance, and the post-processing explored has an important contribution on system performance to achieve better resuits.展开更多
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es...In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.展开更多
Video object segmentation is important for video surveillance, object tracking, video object recognition and video editing. An adaptive video segmentation algorithm based on hidden conditional random fields (HCRFs) is...Video object segmentation is important for video surveillance, object tracking, video object recognition and video editing. An adaptive video segmentation algorithm based on hidden conditional random fields (HCRFs) is proposed, which models spatio-temporal constraints of video sequence. In order to improve the segmentation quality, the weights of spatio-temporal con- straints are adaptively updated by on-line learning for HCRFs. Shadows are the factors affecting segmentation quality. To separate foreground objects from the shadows they cast, linear transform for Gaussian distribution of the background is adopted to model the shadow. The experimental results demonstrated that the error ratio of our algorithm is reduced by 23% and 19% respectively, compared with the Gaussian mixture model (GMM) and spatio-temporal Markov random fields (MRFs).展开更多
Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the a...Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the ability to simulate geometric transformations.Therefore,a deformable convolution is introduced to enhance the adaptability of convolutional networks to spatial transformation.Considering that the deep convolutional neural networks cannot adequately segment the local objects at the output layer due to using the pooling layers in neural network architecture.To overcome this shortcoming,the rough prediction segmentation results of the neural network output layer will be processed by fully connected conditional random fields to improve the ability of image segmentation.The proposed method can easily be trained by end-to-end using standard backpropagation algorithms.Finally,the proposed method is tested on the ISPRS dataset.The results show that the proposed method can effectively overcome the influence of the complex structure of the segmentation object and obtain state-of-the-art accuracy on the ISPRS Vaihingen 2D semantic labeling dataset.展开更多
This paper presents a new method for refining image annotation by integrating probabilistic la- tent semantic analysis (PLSA) with conditional random field (CRF). First a PLSA model with asymmetric modalities is c...This paper presents a new method for refining image annotation by integrating probabilistic la- tent semantic analysis (PLSA) with conditional random field (CRF). First a PLSA model with asymmetric modalities is constructed to predict a candidate set of annotations with confidence scores, and then model semantic relationship among the candidate annotations by leveraging conditional ran- dom field. In CRF, the confidence scores generated lay the PLSA model and the Fliekr distance be- tween pairwise candidate annotations are considered as local evidences and contextual potentials re- spectively. The novelty of our method mainly lies in two aspects : exploiting PLSA to predict a candi- date set of annotations with confidence scores as well as CRF to further explore the semantic context among candidate annotations for precise image annotation. To demonstrate the effectiveness of the method proposed in this paper, an experiment is conducted on the standard Corel dataset and its re- sults are 'compared favorably with several state-of-the-art approaches.展开更多
A fast method for phrase structure grammar analysis is proposed based on conditional ran- dom fields (CRF). The method trains several CRF classifiers for recognizing the phrase nodes at dif- ferent levels, and uses ...A fast method for phrase structure grammar analysis is proposed based on conditional ran- dom fields (CRF). The method trains several CRF classifiers for recognizing the phrase nodes at dif- ferent levels, and uses the bottom-up to connect the recognized phrase nodes to construct the syn- tactic tree. On the basis of Beijing forest studio Chinese tagged corpus, two experiments are de- signed to select the training parameters and verify the validity of the method. The result shows that the method costs 78. 98 ms and 4. 63 ms to train and test a Chinese sentence of 17. 9 words. The method is a new way to parse the phrase structure grammar for Chinese, and has good generalization ability and fast speed.展开更多
To reduce the computation cost of a combined probabilistic graphical model and a deep neural network in semantic segmentation, the local region condition random field (LRCRF) model is investigated which selectively ap...To reduce the computation cost of a combined probabilistic graphical model and a deep neural network in semantic segmentation, the local region condition random field (LRCRF) model is investigated which selectively applies the condition random field (CRF) to the most active region in the image. The full convolutional network structure is optimized with the ResNet-18 structure and dilated convolution to expand the receptive field. The tracking networks are also improved based on SiameseFC by considering the frame relations in consecutive-frame traffic scene maps. Moreover, the segmentation results of the greyscale input data sets are more stable and effective than using the RGB images for deep neural network feature extraction. The experimental results show that the proposed method takes advantage of the image features directly and achieves good real-time performance and high segmentation accuracy.展开更多
Identifying gene names is an attractive research area of biology computing. However, accurate extraction of gene names is a challenging task with the lack of conventions for describing gene names. We devise a systemat...Identifying gene names is an attractive research area of biology computing. However, accurate extraction of gene names is a challenging task with the lack of conventions for describing gene names. We devise a systematical architecture and apply the model using conditional random fields (CRFs) for extracting gene names from Medline. In order to improve the performance, biomedical ontology features are inserted into the model and post processing including boundary adjusting and word filter is presented to solve name overlapping problem and remove false positive single words. Pure string match method, baseline CRFs, and CRFs with our methods are applied to human gene names and HIV gene names extraction respectively in 1100 abstracts of Medline and their performances are contrasted. Results show that CRFs are robust for unseen gene names. Furthermore, CRFs with our methods outperforms other methods with precision 0.818 and recall 0.812.展开更多
The paper deals with temporary repairs. Applying a different technology, using a reproduction part, or performing a repair by a serviceman without the competence is typical features of temporary repairs. Temporary rep...The paper deals with temporary repairs. Applying a different technology, using a reproduction part, or performing a repair by a serviceman without the competence is typical features of temporary repairs. Temporary repair makes possible for an object to fulfil its function for a limited time, until regular repairs can be made. The complexity perplex modern vehicles their reparability. It is necessary to look for the new procedures of the implementation so-called temporary repairs. The authors suggested procedure battle damage assessment and repair, which they expressed in the form of diagrams. There is also description of new technological procedures, which could be possibly applied in field of temporary repairs. These new procedures are applied on land (wheeled and tracked) vehicles parts and their sufficiency for Czech Army conditions is tested. The main purpose of the thesis is defining operating procedures of the most useful methods, including their verifications and proposal of tools needed for repairs. These tools should be included in equipment of vehicles operated in Czech Army. The thesis is primarily focused on repairs of mechanical parts and units and also of reparation of fuel, hydraulic and high pressure systems.展开更多
地图匹配是许多位置服务与轨迹挖掘应用的基础.随着定位技术和位置服务应用的发展,地图匹配研究不断演进,从早期基于高采样率GPS(Global Position System)的实时匹配,到近期基于低采样率GPS轨迹的离线匹配、再到当前非GPS定位数据或高...地图匹配是许多位置服务与轨迹挖掘应用的基础.随着定位技术和位置服务应用的发展,地图匹配研究不断演进,从早期基于高采样率GPS(Global Position System)的实时匹配,到近期基于低采样率GPS轨迹的离线匹配、再到当前非GPS定位数据或高精度地图匹配。迄今已有许多地图匹配算法相继提出,但鲜有研究对这些算法进行全面总结.为此,对近十年提出的地图匹配算法进行调研,归纳出地图匹配算法的统一框架及常用时空特征.从模型或实现技术角度分类发现:现有算法大都采用HMM(Hidden Markov Model)模型,其次是最大权重模型;深度学习技术近期开始用于地图匹配,将是未来高精度地图匹配研究的趋势.展开更多
A new joint decoding strategy that combines the character-based and word-based conditional random field model is proposed.In this segmentation framework,fragments are used to generate candidate Out-of-Vocabularies(OOV...A new joint decoding strategy that combines the character-based and word-based conditional random field model is proposed.In this segmentation framework,fragments are used to generate candidate Out-of-Vocabularies(OOVs).After the initial segmentation,the segmentation fragments are divided into two classes as "combination"(combining several fragments as an unknown word) and "segregation"(segregating to some words).So,more OOVs can be recalled.Moreover,for the characteristics of the cross-domain segmentation,context information is reasonably used to guide Chinese Word Segmentation(CWS).This method is proved to be effective through several experiments on the test data from Sighan Bakeoffs 2007 and Bakeoffs 2010.The rates of OOV recall obtain better performance and the overall segmentation performances achieve a good effect.展开更多
基金Under the auspices of the Excellent Youth Talent Project of Jilin Science and Technology Development Program(No.20170520078JH)Science and Technology Basic Work of Science and Technology(No.2014FY210800–4)National Natural Science Foundation of China(No.41601382)
文摘Soil surface roughness, denoted by the root mean square height(RMSH), and soil moisture(SM) are critical factors that affect the accuracy of quantitative remote sensing research due to their combined influence on spectral reflectance(SR). In regards to this issue, three SM levels and four RMSH levels were artificially designed in this study; a total of 12 plots was used, each plot had a size of 3 m × 3 m. Eight spectral observations were conducted from 14 to 30 October 2017 to investigate the correlation between RMSH, SM, and SR. On this basis, 6 commonly used bands of optical satellite sensors were selected in this study, which are red(675 nm), green(555 nm), blue(485 nm), near infrared(845 nm), shortwave infrared 1(1600 nm), and shortwave infrared 2(2200 nm). A negative correlation was found between SR and RMSH, and between SR and SM. The bands with higher coefficient of determination R^2 values were selected for stepwise multiple nonlinear regression analysis. Four characterized bands(i.e., blue, green, near infrared, and shortwave infrared 2) were chosen as the independent variables to estimate SM with R^2 and root mean square error(RMSE) values equal to 0.62 and 2.6%, respectively. Similarly, the four bands(green, red, near infrared, and shortwave infrared 1) were used to estimate RMSH with R^2 and RMSE values equal to 0.48 and 0.69 cm, respectively. These results indicate that the method used is not only suitable for estimating SM but can also be extended to the prediction of RMSH. Finally, the evaluation approach presented in this paper highly restores the real situation of the natural farmland surface on the one hand, and obtains high precision values of SM and RMSH on the other. The method can be further applied to the prediction of farmland SM and RMSH based on satellite and unmanned aerial vehicle(UAV) optical imagery.
文摘Regulation of gonadal function by gonadotropic hormone (GtH) and gonadotropin-releasing hormone (GnRH) in Channa punctatus was significantly affected by nonlethal levels of Metacid-50 and Carbaryl. Under laboratory conditions, the time-dependent decrease in serum GtH level was higher in Carbaryl-treated fish than in Metacid-50-treated fish. The situation was reversed in the field, with a higher inhibitory effect of Metacid-50 being recorded. On the other hand, pituitary GtH content and GnRH activity were inhibited to a greater extent by Metacid-50 than by Carbaryl under both field and laboratory conditions. The present findings highlight that even low doses of Metacid-50 and Carbaryl are effective enough to cause reproductive damage, as evidenced by homeostatic unbalance of the reproductive regulatory system. 1990 Academic Press. Inc.
文摘This study was carried out to assess the growth characteristics of Grewia moll&, Grewia tenax and Grewia villosa under the nursery and field conditions. Two experiments were conducted at the farm of the College of Natural Resources and Environmental Studies, University of Juba, Khartoum, Sudan. Randomized complete block design with three replications was used. Morphological and physiological factors were measured. Seedlings height, number of leaves, number of branches and sub-branches were different (P 〈 0.05) among the three species at the nursery stage and under field conditions. Collar diameter showed significant difference among the species under field conditions. Physiological factors exhibited more significant variations in the field than at the nursery stage. Variations in growth characteristics were attributed to genetics differences and different growth habit, while variations in physiological factors (photosynthesis and transpiration rate) were attributed to differences in leaf structure, size and number of stomatal pores.
基金support from the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of China(Grant No.U1865203)the Innovation Team of Changjiang River Scientific Research Institute(Grant Nos.CKSF2021715/YT and CKSF2023305/YT)。
文摘The shear behavior of large-scale weak intercalation shear zones(WISZs)often governs the stability of foundations,rock slopes,and underground structures.However,due to their wide distribution,undulating morphology,complex fabrics,and varying degrees of contact states,characterizing the shear behavior of natural and complex large-scale WISZs precisely is challenging.This study proposes an analytical method to address this issue,based on geological fieldwork and relevant experimental results.The analytical method utilizes the random field theory and Kriging interpolation technique to simplify the spatial uncertainties of the structural and fabric features for WISZs into the spatial correlation and variability of their mechanical parameters.The Kriging conditional random field of the friction angle of WISZs is embedded in the discrete element software 3DEC,enabling activation analysis of WISZ C2 in the underground caverns of the Baihetan hydropower station.The results indicate that the activation scope of WISZ C2 induced by the excavation of underground caverns is approximately 0.5e1 times the main powerhouse span,showing local activation.Furthermore,the overall safety factor of WISZ C2 follows a normal distribution with an average value of 3.697.
基金The National Natural Science Foundation of China(No60663004)the PhD Programs Foundation of Ministry of Educa-tion of China (No20050007023)
文摘Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method takes shallow syntactic parsing as the foundation, phrases or named entities as the labeled units, and the CRFs model is trained to label the predicates' semantic roles in a sentence. The key of the method is parameter estimation and feature selection for the CRFs model. The L-BFGS algorithm was employed for parameter estimation, and three category features: features based on sentence constituents, features based on predicate, and predicate-constituent features as a set of features for the model were selected. Evaluation on the datasets of CoNLL-2005 SRL shared task shows that the method can obtain better performance than the maximum entropy model, and can achieve 80. 43 % precision and 63. 55 % recall for semantic role labeling.
文摘The use of hidden conditional random fields (HCRFs) for tone modeling is explored. The tone recognition performance is improved using HCRFs by taking advantage of intra-syllable dynamic, inter-syllable dynamic and duration features. When the tone model is integrated into continuous speech recognition, the discriminative model weight training (DMWT) is proposed. Acoustic and tone scores are scaled by model weights discriminatively trained by the minimum phone error (MPE) criterion. Two schemes of weight training are evaluated and a smoothing technique is used to make training robust to overtraining problem. Experiments show that the accuracies of tone recognition and large vocabulary continuous speech recognition (LVCSR) can be improved by the HCRFs based tone model. Compared with the global weight scheme, continuous speech recognition can be improved by the discriminative trained weight combinations.
基金the funding support from the National Natural Science Foundation of China (Grant No. 52078086)Program of Distinguished Young Scholars, Natural Science Foundation of Chongqing, China (Grant No. cstc2020jcyj-jq0087)State Education Ministry and the Fundamental Research Funds for the Central Universities (Grant No. 2019 CDJSK 04 XK23)
文摘Rockhead profile is an important part of geological profiles and can have significant impacts on some geotechnical engineering practice,and thus,it is necessary to establish a useful method to reverse the rockhead profile using site investigation results.As a general method to reflect the spatial distribution of geo-material properties based on field measurements,the conditional random field(CRF)was improved in this paper to simulate rockhead profiles.Besides,in geotechnical engineering practice,measurements are generally limited due to the limitations of budget and time so that the estimation of the mean value can have uncertainty to some extent.As the Bayesian theory can effectively combine the measurements and prior information to deal with uncertainty,CRF was implemented with the aid of the Bayesian framework in this study.More importantly,this simulation procedure is achieved as an analytical solution to avoid the time-consuming sampling work.The results show that the proposed method can provide a reasonable estimation about the rockhead depth at various locations against measurement data and as a result,the subjectivity in determining prior mean can be minimized.Finally,both the measurement data and selection of hyper-parameters in the proposed method can affect the simulated rockhead profiles,while the influence of the latter is less significant than that of the former.
基金supported by Science and Technology Project of State Grid Corporation(Research and Application of Intelligent Energy Meter Quality Analysis and Evaluation Technology Based on Full Chain Data)
文摘With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service response provision.Knowledge graphs are usually constructed based on entity recognition.Specifically,based on the mining of entity attributes and relationships,domain knowledge graphs can be constructed through knowledge fusion.In this work,the entities and characteristics of power entity recognition are analyzed,the mechanism of entity recognition is clarified,and entity recognition techniques are analyzed in the context of the power domain.Power entity recognition based on the conditional random fields (CRF) and bidirectional long short-term memory (BLSTM) models is investigated,and the two methods are comparatively analyzed.The results indicated that the CRF model,with an accuracy of 83%,can better identify the power entities compared to the BLSTM.The CRF approach can thus be applied to the entity extraction for knowledge graph construction in the power field.
基金Supported by The National Natural Science Foundation of China(No.60302021).
文摘Named entity recognition is a fundamental task in biomedical data mining. In this letter, a named entity recognition system based on CRFs (Conditional Random Fields) for biomedical texts is presented. The system makes extensive use of a diverse set of features, including local features, full text features and external resource features. All features incorporated in this system are described in detail, and the impacts of different feature sets on the performance of the system are evaluated. In order to improve the performance of system, post-processing modules are exploited to deal with the abbreviation phenomena, cascaded named entity and boundary errors identification. Evaluation on this system proved that the feature selection has important impact on the system performance, and the post-processing explored has an important contribution on system performance to achieve better resuits.
文摘In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.
基金Project supported by the National Natural Science Foundation of China (Nos. 60473106, 60273060 and 60333010)the Ministry of Education of China (No. 20030335064)the Education Depart-ment of Zhejiang Province, China (No. G20030433)
文摘Video object segmentation is important for video surveillance, object tracking, video object recognition and video editing. An adaptive video segmentation algorithm based on hidden conditional random fields (HCRFs) is proposed, which models spatio-temporal constraints of video sequence. In order to improve the segmentation quality, the weights of spatio-temporal con- straints are adaptively updated by on-line learning for HCRFs. Shadows are the factors affecting segmentation quality. To separate foreground objects from the shadows they cast, linear transform for Gaussian distribution of the background is adopted to model the shadow. The experimental results demonstrated that the error ratio of our algorithm is reduced by 23% and 19% respectively, compared with the Gaussian mixture model (GMM) and spatio-temporal Markov random fields (MRFs).
基金National Key Research and Development Program of China(No.2017YFC0405806)。
文摘Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the ability to simulate geometric transformations.Therefore,a deformable convolution is introduced to enhance the adaptability of convolutional networks to spatial transformation.Considering that the deep convolutional neural networks cannot adequately segment the local objects at the output layer due to using the pooling layers in neural network architecture.To overcome this shortcoming,the rough prediction segmentation results of the neural network output layer will be processed by fully connected conditional random fields to improve the ability of image segmentation.The proposed method can easily be trained by end-to-end using standard backpropagation algorithms.Finally,the proposed method is tested on the ISPRS dataset.The results show that the proposed method can effectively overcome the influence of the complex structure of the segmentation object and obtain state-of-the-art accuracy on the ISPRS Vaihingen 2D semantic labeling dataset.
基金Supported by the National Basic Research Priorities Programme(No.2013CB329502)the National High Technology Research and Development Programme of China(No.2012AA011003)+1 种基金the Natural Science Basic Research Plan in Shanxi Province of China(No.2014JQ2-6036)the Science and Technology R&D Program of Baoji City(No.203020013,2013R2-2)
文摘This paper presents a new method for refining image annotation by integrating probabilistic la- tent semantic analysis (PLSA) with conditional random field (CRF). First a PLSA model with asymmetric modalities is constructed to predict a candidate set of annotations with confidence scores, and then model semantic relationship among the candidate annotations by leveraging conditional ran- dom field. In CRF, the confidence scores generated lay the PLSA model and the Fliekr distance be- tween pairwise candidate annotations are considered as local evidences and contextual potentials re- spectively. The novelty of our method mainly lies in two aspects : exploiting PLSA to predict a candi- date set of annotations with confidence scores as well as CRF to further explore the semantic context among candidate annotations for precise image annotation. To demonstrate the effectiveness of the method proposed in this paper, an experiment is conducted on the standard Corel dataset and its re- sults are 'compared favorably with several state-of-the-art approaches.
基金Supported by the Science and Technology Innovation Plan of Beijing Institute of Technology(2013)
文摘A fast method for phrase structure grammar analysis is proposed based on conditional ran- dom fields (CRF). The method trains several CRF classifiers for recognizing the phrase nodes at dif- ferent levels, and uses the bottom-up to connect the recognized phrase nodes to construct the syn- tactic tree. On the basis of Beijing forest studio Chinese tagged corpus, two experiments are de- signed to select the training parameters and verify the validity of the method. The result shows that the method costs 78. 98 ms and 4. 63 ms to train and test a Chinese sentence of 17. 9 words. The method is a new way to parse the phrase structure grammar for Chinese, and has good generalization ability and fast speed.
文摘To reduce the computation cost of a combined probabilistic graphical model and a deep neural network in semantic segmentation, the local region condition random field (LRCRF) model is investigated which selectively applies the condition random field (CRF) to the most active region in the image. The full convolutional network structure is optimized with the ResNet-18 structure and dilated convolution to expand the receptive field. The tracking networks are also improved based on SiameseFC by considering the frame relations in consecutive-frame traffic scene maps. Moreover, the segmentation results of the greyscale input data sets are more stable and effective than using the RGB images for deep neural network feature extraction. The experimental results show that the proposed method takes advantage of the image features directly and achieves good real-time performance and high segmentation accuracy.
基金supported by China Scholarship Council under Grant No 2007104897UESTC Youth Foundation under Grant No JX05007
文摘Identifying gene names is an attractive research area of biology computing. However, accurate extraction of gene names is a challenging task with the lack of conventions for describing gene names. We devise a systematical architecture and apply the model using conditional random fields (CRFs) for extracting gene names from Medline. In order to improve the performance, biomedical ontology features are inserted into the model and post processing including boundary adjusting and word filter is presented to solve name overlapping problem and remove false positive single words. Pure string match method, baseline CRFs, and CRFs with our methods are applied to human gene names and HIV gene names extraction respectively in 1100 abstracts of Medline and their performances are contrasted. Results show that CRFs are robust for unseen gene names. Furthermore, CRFs with our methods outperforms other methods with precision 0.818 and recall 0.812.
文摘The paper deals with temporary repairs. Applying a different technology, using a reproduction part, or performing a repair by a serviceman without the competence is typical features of temporary repairs. Temporary repair makes possible for an object to fulfil its function for a limited time, until regular repairs can be made. The complexity perplex modern vehicles their reparability. It is necessary to look for the new procedures of the implementation so-called temporary repairs. The authors suggested procedure battle damage assessment and repair, which they expressed in the form of diagrams. There is also description of new technological procedures, which could be possibly applied in field of temporary repairs. These new procedures are applied on land (wheeled and tracked) vehicles parts and their sufficiency for Czech Army conditions is tested. The main purpose of the thesis is defining operating procedures of the most useful methods, including their verifications and proposal of tools needed for repairs. These tools should be included in equipment of vehicles operated in Czech Army. The thesis is primarily focused on repairs of mechanical parts and units and also of reparation of fuel, hydraulic and high pressure systems.
文摘地图匹配是许多位置服务与轨迹挖掘应用的基础.随着定位技术和位置服务应用的发展,地图匹配研究不断演进,从早期基于高采样率GPS(Global Position System)的实时匹配,到近期基于低采样率GPS轨迹的离线匹配、再到当前非GPS定位数据或高精度地图匹配。迄今已有许多地图匹配算法相继提出,但鲜有研究对这些算法进行全面总结.为此,对近十年提出的地图匹配算法进行调研,归纳出地图匹配算法的统一框架及常用时空特征.从模型或实现技术角度分类发现:现有算法大都采用HMM(Hidden Markov Model)模型,其次是最大权重模型;深度学习技术近期开始用于地图匹配,将是未来高精度地图匹配研究的趋势.
基金supported by the National Natural Science Foundation of China under Grants No.61173100,No.61173101the Fundamental Research Funds for the Central Universities under Grant No.DUT10RW202
文摘A new joint decoding strategy that combines the character-based and word-based conditional random field model is proposed.In this segmentation framework,fragments are used to generate candidate Out-of-Vocabularies(OOVs).After the initial segmentation,the segmentation fragments are divided into two classes as "combination"(combining several fragments as an unknown word) and "segregation"(segregating to some words).So,more OOVs can be recalled.Moreover,for the characteristics of the cross-domain segmentation,context information is reasonably used to guide Chinese Word Segmentation(CWS).This method is proved to be effective through several experiments on the test data from Sighan Bakeoffs 2007 and Bakeoffs 2010.The rates of OOV recall obtain better performance and the overall segmentation performances achieve a good effect.