About one--fOurth of the con- sery’e capacity at l00 billion cubic me-struction on China’s largest off shore tres.drilling field is now complete. and en- By January 30. more than 240gineers say the projcct is on sch...About one--fOurth of the con- sery’e capacity at l00 billion cubic me-struction on China’s largest off shore tres.drilling field is now complete. and en- By January 30. more than 240gineers say the projcct is on schedule kilo1netres ol’ underu:ater pipelinestbr opening January l. l996. u:ere laid. about one fourth of the to-The Ya l3-- l Gas Field in the ta1. according yesterday’s o\’erseas edi-South Chlna Sea wiIl suppl} Hong tion or People’s Dall}’.Kong and Hainan Province w’ith natu- Exentually tuo underuaterral gas. Estimates put the tield’s re- pipeIInes ’’iIl he constructedt one.展开更多
The spiral assembly steel structure, a newly developed retaining wall for the rapid excavation of small-sized foundation pits in unsaturated soil, is presented. This new type of retaining structure is prefabricated in...The spiral assembly steel structure, a newly developed retaining wall for the rapid excavation of small-sized foundation pits in unsaturated soil, is presented. This new type of retaining structure is prefabricated in the factory and is assembled on site in the excavation of a pit. This retaining structure is composed of several prefabricated steel structural units, in which the adjacent steel structural units are joined with connectors. Each steel structural unit has one steel pipe in the radial direction and is welded to a single piece of steel plate. After full installation in situ, the retaining structure becomes a cylindrical steel structure. With the protection afforded by this new type of retaining structure, excavation work can be completed within 24 h to a depth up to 5 m. In order to verify the reliability and effectiveness of this new retaining structure, field construction tests were conducted in Beijing, China. The test construction was monitored. The monitoring program included measuring stress in the structure, lateral earth pressure, and lateral deformation of the surrounding soil. The monitoring data from the field test were compared with the theoretical results. The results show that the proposed new structure is reliable and effective.展开更多
The activation of inert oxygen(O_(2))often consumes enormous amounts of energy and resources,which is a global challenge in the field of environmental remediation and fuel cells.Organic pollutants are abundant in elec...The activation of inert oxygen(O_(2))often consumes enormous amounts of energy and resources,which is a global challenge in the field of environmental remediation and fuel cells.Organic pollutants are abundant in electrons and are promising alternative electron donors.Herein,we implement sustainable microactivation of dissolved oxygen(DO)by using the electrons and adsorption energy of pollutants by creating a nonequilibrium microsurface on nanoparticle-integrated molybdenum(Mo)lattice-doped zinc sulfide(ZnS)composites(MZS-1).Organic pollutants were quickly removed by DO microactivation in the MZS-1 system under natural conditions without any additional energy or electron donor.The turnover frequency(TOF,per Mo atom basis)is 5 orders of magnitude higher than those of homogeneous systems.Structural and electronic characterization technologies reveal the change in the crystalline phase(Zn-S-Mo)and the activation of π-electrons on six-membered rings of ZnS after Mo doping,which results in the formation of a nonequilibrium microsurface on MZS-1.This is the key for the strong interfacial interaction and directional electron transfer from pollutants to MZS-1 through the delocalized π-π conjugation effect and from MZS-1 to DO via Zn-S-Mo,as demonstrated by electron paramagnetic resonance(EPR)techniques and density functional theory(DFT)calculations.This process achieves the efficient use of pollutants and the low-energy activation of O_(2) through the construction of a nonequilibrium microsurface,which shows new significance for water treatment.展开更多
文摘About one--fOurth of the con- sery’e capacity at l00 billion cubic me-struction on China’s largest off shore tres.drilling field is now complete. and en- By January 30. more than 240gineers say the projcct is on schedule kilo1netres ol’ underu:ater pipelinestbr opening January l. l996. u:ere laid. about one fourth of the to-The Ya l3-- l Gas Field in the ta1. according yesterday’s o\’erseas edi-South Chlna Sea wiIl suppl} Hong tion or People’s Dall}’.Kong and Hainan Province w’ith natu- Exentually tuo underuaterral gas. Estimates put the tield’s re- pipeIInes ’’iIl he constructedt one.
基金Project(41202220)supported by the National Natural Science Foundation of ChinaProject(20120022120003)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(2652012065)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2013006)supported by the Research Fund for Key Laboratory on Deep Geo Drilling Technology,Ministry of Land and Resources,China
文摘The spiral assembly steel structure, a newly developed retaining wall for the rapid excavation of small-sized foundation pits in unsaturated soil, is presented. This new type of retaining structure is prefabricated in the factory and is assembled on site in the excavation of a pit. This retaining structure is composed of several prefabricated steel structural units, in which the adjacent steel structural units are joined with connectors. Each steel structural unit has one steel pipe in the radial direction and is welded to a single piece of steel plate. After full installation in situ, the retaining structure becomes a cylindrical steel structure. With the protection afforded by this new type of retaining structure, excavation work can be completed within 24 h to a depth up to 5 m. In order to verify the reliability and effectiveness of this new retaining structure, field construction tests were conducted in Beijing, China. The test construction was monitored. The monitoring program included measuring stress in the structure, lateral earth pressure, and lateral deformation of the surrounding soil. The monitoring data from the field test were compared with the theoretical results. The results show that the proposed new structure is reliable and effective.
基金financially supported by the National Natural Science Foundation of China(52122009,52070046 and 51838005)the Introduced Innovative Research and Development Team Project under the“Pearl River Talent Recruitment Program”of Guangdong Province(2019ZT08L387)+2 种基金the National College Students’Innovation and Entrepreneurship Training Program,China(202111078021,202111078019,and 202011078019)the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation-“Climbing Program”Special Funds(pdjh2021b0395)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(Young Scholar).
文摘The activation of inert oxygen(O_(2))often consumes enormous amounts of energy and resources,which is a global challenge in the field of environmental remediation and fuel cells.Organic pollutants are abundant in electrons and are promising alternative electron donors.Herein,we implement sustainable microactivation of dissolved oxygen(DO)by using the electrons and adsorption energy of pollutants by creating a nonequilibrium microsurface on nanoparticle-integrated molybdenum(Mo)lattice-doped zinc sulfide(ZnS)composites(MZS-1).Organic pollutants were quickly removed by DO microactivation in the MZS-1 system under natural conditions without any additional energy or electron donor.The turnover frequency(TOF,per Mo atom basis)is 5 orders of magnitude higher than those of homogeneous systems.Structural and electronic characterization technologies reveal the change in the crystalline phase(Zn-S-Mo)and the activation of π-electrons on six-membered rings of ZnS after Mo doping,which results in the formation of a nonequilibrium microsurface on MZS-1.This is the key for the strong interfacial interaction and directional electron transfer from pollutants to MZS-1 through the delocalized π-π conjugation effect and from MZS-1 to DO via Zn-S-Mo,as demonstrated by electron paramagnetic resonance(EPR)techniques and density functional theory(DFT)calculations.This process achieves the efficient use of pollutants and the low-energy activation of O_(2) through the construction of a nonequilibrium microsurface,which shows new significance for water treatment.