Abstract In the four-anode device, the mirror magnetic field affects the characteristics of charged particles motion, so that the current-voltage relations of glow discharge are changed. Firstly, the discharge device ...Abstract In the four-anode device, the mirror magnetic field affects the characteristics of charged particles motion, so that the current-voltage relations of glow discharge are changed. Firstly, the discharge device is introduced, and the distribution of mirror magnetic field generated by the loops surrounding the discharge chamber is presented. Both the discharge current-voltage characteristics and the radial distributions of electron density are measured, respectively, with/without the magnetic field. When the discharge occurs in a 99.99% helium with a pressure ranging from 100 Pa to 800 Pa without magnetic field, the voltage, sustaining a certain abnormal glow discharge current, decreases with the increase in gas pressure. With a mirror magnetic field of certain intensity, the discharge voltage increases with the current in a rate slower than that without the magnetic field. Moreover, when the magnetic field intensity increases, the discharge voltage first decreases then increases. Simultaneously, the mirror magnetic field affects the moving characteristics of charged particles, and causes a more inhomogeneous electron density.展开更多
Magnetic mirror used as an efficient tool to confine plasma has been widely adopted in many different areas especially in recent cusped field thrusters. In order to check the influence of magnetic mirror effect on the...Magnetic mirror used as an efficient tool to confine plasma has been widely adopted in many different areas especially in recent cusped field thrusters. In order to check the influence of magnetic mirror effect on the plasma distribution in a cusped field thruster, three different radii of the discharge channel(6 mm, 4 mm, and 2 mm) in a cusped field thruster are investigated by using Particle-in-Cell Plus Monte Carlo(PIC-MCC) simulated method, under the condition of a fixed axial length of the discharge channel and the same operating parameters. It is found that magnetic cusps inside the small radius discharge channel cannot confine electrons very well. Thus, the electric field is hard to establish. With the reduction of the discharge channel’s diameter, more electrons will escape from cusps to the centerline area near the anode due to a lower magnetic mirror ratio. Meanwhile, the leak width of the cusped magnetic field will increase at the cusp. By increasing the magnetic field strength in a small radius model of a cusped field thruster, the negative effect caused by the weak magnetic mirror effect can be partially compensated. Therefore, according to engineering design, the increase of magnetic field strength can contribute to obtaining a good performance, when the radial distance between the magnets and the inner surface of the discharge channel is relatively big.展开更多
A Monte Carlo simulation technique has been used to model the electron transport' behavior, especially the electron density and energy distributions under the influence of a mirror magnetic field and a uniform ele...A Monte Carlo simulation technique has been used to model the electron transport' behavior, especially the electron density and energy distributions under the influence of a mirror magnetic field and a uniform electric field in a positive column of helium direct current(DC) gas discharge Graphs showing the electron density and energy distributions, and the percentage of electrons that reach the wall and the end of the positive column are presented. The results indicate that the mirror magnetic field can control the electron transport behavior in the positive column which are in good agreement with experimental results.展开更多
Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shie...Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shield, the magnetic field lines near the anode surface are obviously convex curved, the ratio of the magnetic mirror is enhanced, the width of the positive magnetic field gradient becomes larger than that without the anode magnetic shielding, the radial magnetic field component is enhanced, and the discharge plasma turbulence is reduced as a result of keeping the original saddle field profile and the important role the other two saddle field profiles play in restricting electrons. The results of the particle in cell (PIC) numerical simulation show that both the ion number and the energy of the ion beam increase after the anode is shielded by the magnetic shield. In other words, the specific impulse of the cylindrical Hall thruster is enhanced.展开更多
Einstein relativity theory shows its high capability of promoting itself to solve the long stand physical problems. The so-called generalized special relativity (GSR) was derived later, using the beautiful Einstein re...Einstein relativity theory shows its high capability of promoting itself to solve the long stand physical problems. The so-called generalized special relativity (GSR) was derived later, using the beautiful Einstein relation between field and space-time curvature. In this work we re-derive (GSR) expression of time by incorporating the field effect in it, and by using mirror clock and Lorentz transformations. This expression reduces to that of (GSR) the previous conventional one, besides reducing to special relativistic expression. It also shows that the speed of light is constant inside the field and is equal to C. This means that the observed decrease of light in matter and field is attributed to the strong interaction of photons with particles and mediates which causes successive absorption and reemission processes that lead to time delay. This absorption process makes some particles appear to move faster than light within the field or medium. This new expression, unlike that of GSR, can describe time and coordinate relativistic expressions for strong as well as weak fields at constant acceleration.展开更多
For reducing both extreme ultraviolet attosecond pulses energy loss in the focusing reflection process and measurement error caused by pulse focusing aberration, as well as improving the operability of pulse spectrosc...For reducing both extreme ultraviolet attosecond pulses energy loss in the focusing reflection process and measurement error caused by pulse focusing aberration, as well as improving the operability of pulse spectroscopy monitoring, a combined focusing and flat-field spectrometer analysis system for attosecond pulse is proposed and designed through step-by-step performance optimization. The focusing and spectrum-analyzing components are gold- coated grazing incidence to roidal mirror and grazing incidence concave focusing grating, respectively. The characteristic parameters of the system are given in details. The system proposed can find application in research platform of attosecond spectroscopy using high energy short attosecond pulse as basic probe tool.展开更多
In the case of three-layered(air-seawater-seabed)model,the analytical expressions of the static electric and static magnetic field produced by the static electric dipole located in seawater were derived by using the m...In the case of three-layered(air-seawater-seabed)model,the analytical expressions of the static electric and static magnetic field produced by the static electric dipole located in seawater were derived by using the mirror image theory.Combined with the distribution of the underwater electric potential measured in laboratory,an electric dipole model for physical scale of ship was established and the distribution characteristics of an actual ship' s corrosion related magnetic field were obtained.Based on established models,theoretical analysis and calculation were made to catch out the distribution characteristics of static magnetic field related with corrosion and anticorrosion,which can not be measured directly in seawater.The results show that the static magnetic field related with corrosion and anticorrosion is a kind of noteworthy obstacle signal for degaussed ships.展开更多
The description of the received new results of field geological (teсtonophysical) study of massifs of rocks is provided: tectonic jointing, explosive and folded deformations, mirrors of slidings, tectonic motions of ...The description of the received new results of field geological (teсtonophysical) study of massifs of rocks is provided: tectonic jointing, explosive and folded deformations, mirrors of slidings, tectonic motions of blocks of breeds. Reconstruction of fields of tension according to geological data of the certain massif of the Chatkalo-Kurama mountain area (Tien-Shan)—a coastal zone of the Charvak reservoir and the Almalyk mining industrial region is executed. The multidirectional motions of blocks of rocks in the massif of a coastal zone of the Charvak reservoir connected with tectonic and technogenic factors are revealed. The scheme of kinematics and the intense deformed condition of blocks of the Almalyk district is received. Here the regional field of tension with horizontal and submeridional orientation of an axis of the main normal tension of compression at the inclined provision of two other axes are observed. The received results testify to opportunities field the tectonophysical of methods for obtaining important data on kinematics and dynamics of massifs of rocks, tectonic blocks, and features of their deformation. Such studying of the massif of rocks before the beginning and in the course of performance of work on objects of the national economy is important for the choice of design and optimum parameters of laying of excavations, control of a condition of their boards and walls, definition of strategy of safety of conducting mining operations and also seismic stability of constructions.展开更多
This is a paper of analysis and research dealing with the dynamic process and pattern offibre in an electrostatic field. The paper first discusses the distribution of the electric field in spaceand describes in detail...This is a paper of analysis and research dealing with the dynamic process and pattern offibre in an electrostatic field. The paper first discusses the distribution of the electric field in spaceand describes in detail the various manners of electrification of fibres and the changing patternbefore and after their entrance into the field. It then introduces the gravity of the fibre and theforce of the airflow transporting the fibre, and finally, a group of motion equations from thefibre are derived. Replacing the parameters in the equations with the experimental data, the nu-merical solutions can be obtained and the motion loci in different environments will be drawn bythe computer. The loci conform basically with the results obtained by stroboflash photography.展开更多
基金Program for New Century Excellent Talents in University (NCET) of ChinaFundation of the Key Lab of Infrared and Low Temperature Plasma of Anhui Province of China(No.2007A003003U)
文摘Abstract In the four-anode device, the mirror magnetic field affects the characteristics of charged particles motion, so that the current-voltage relations of glow discharge are changed. Firstly, the discharge device is introduced, and the distribution of mirror magnetic field generated by the loops surrounding the discharge chamber is presented. Both the discharge current-voltage characteristics and the radial distributions of electron density are measured, respectively, with/without the magnetic field. When the discharge occurs in a 99.99% helium with a pressure ranging from 100 Pa to 800 Pa without magnetic field, the voltage, sustaining a certain abnormal glow discharge current, decreases with the increase in gas pressure. With a mirror magnetic field of certain intensity, the discharge voltage increases with the current in a rate slower than that without the magnetic field. Moreover, when the magnetic field intensity increases, the discharge voltage first decreases then increases. Simultaneously, the mirror magnetic field affects the moving characteristics of charged particles, and causes a more inhomogeneous electron density.
基金supported by the National Natural Science Foundation of China(Grant No.51006028)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51121004)
文摘Magnetic mirror used as an efficient tool to confine plasma has been widely adopted in many different areas especially in recent cusped field thrusters. In order to check the influence of magnetic mirror effect on the plasma distribution in a cusped field thruster, three different radii of the discharge channel(6 mm, 4 mm, and 2 mm) in a cusped field thruster are investigated by using Particle-in-Cell Plus Monte Carlo(PIC-MCC) simulated method, under the condition of a fixed axial length of the discharge channel and the same operating parameters. It is found that magnetic cusps inside the small radius discharge channel cannot confine electrons very well. Thus, the electric field is hard to establish. With the reduction of the discharge channel’s diameter, more electrons will escape from cusps to the centerline area near the anode due to a lower magnetic mirror ratio. Meanwhile, the leak width of the cusped magnetic field will increase at the cusp. By increasing the magnetic field strength in a small radius model of a cusped field thruster, the negative effect caused by the weak magnetic mirror effect can be partially compensated. Therefore, according to engineering design, the increase of magnetic field strength can contribute to obtaining a good performance, when the radial distance between the magnets and the inner surface of the discharge channel is relatively big.
文摘A Monte Carlo simulation technique has been used to model the electron transport' behavior, especially the electron density and energy distributions under the influence of a mirror magnetic field and a uniform electric field in a positive column of helium direct current(DC) gas discharge Graphs showing the electron density and energy distributions, and the percentage of electrons that reach the wall and the end of the positive column are presented. The results indicate that the mirror magnetic field can control the electron transport behavior in the positive column which are in good agreement with experimental results.
基金supported by National Natural Science Foundation of China (No. 10675040)College Scientific Research and Development Fund (No. C122009015) of China
文摘Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shield, the magnetic field lines near the anode surface are obviously convex curved, the ratio of the magnetic mirror is enhanced, the width of the positive magnetic field gradient becomes larger than that without the anode magnetic shielding, the radial magnetic field component is enhanced, and the discharge plasma turbulence is reduced as a result of keeping the original saddle field profile and the important role the other two saddle field profiles play in restricting electrons. The results of the particle in cell (PIC) numerical simulation show that both the ion number and the energy of the ion beam increase after the anode is shielded by the magnetic shield. In other words, the specific impulse of the cylindrical Hall thruster is enhanced.
文摘Einstein relativity theory shows its high capability of promoting itself to solve the long stand physical problems. The so-called generalized special relativity (GSR) was derived later, using the beautiful Einstein relation between field and space-time curvature. In this work we re-derive (GSR) expression of time by incorporating the field effect in it, and by using mirror clock and Lorentz transformations. This expression reduces to that of (GSR) the previous conventional one, besides reducing to special relativistic expression. It also shows that the speed of light is constant inside the field and is equal to C. This means that the observed decrease of light in matter and field is attributed to the strong interaction of photons with particles and mediates which causes successive absorption and reemission processes that lead to time delay. This absorption process makes some particles appear to move faster than light within the field or medium. This new expression, unlike that of GSR, can describe time and coordinate relativistic expressions for strong as well as weak fields at constant acceleration.
文摘For reducing both extreme ultraviolet attosecond pulses energy loss in the focusing reflection process and measurement error caused by pulse focusing aberration, as well as improving the operability of pulse spectroscopy monitoring, a combined focusing and flat-field spectrometer analysis system for attosecond pulse is proposed and designed through step-by-step performance optimization. The focusing and spectrum-analyzing components are gold- coated grazing incidence to roidal mirror and grazing incidence concave focusing grating, respectively. The characteristic parameters of the system are given in details. The system proposed can find application in research platform of attosecond spectroscopy using high energy short attosecond pulse as basic probe tool.
基金Sponsored by National Defense Pre-research Foundation(51444070105JB11)
文摘In the case of three-layered(air-seawater-seabed)model,the analytical expressions of the static electric and static magnetic field produced by the static electric dipole located in seawater were derived by using the mirror image theory.Combined with the distribution of the underwater electric potential measured in laboratory,an electric dipole model for physical scale of ship was established and the distribution characteristics of an actual ship' s corrosion related magnetic field were obtained.Based on established models,theoretical analysis and calculation were made to catch out the distribution characteristics of static magnetic field related with corrosion and anticorrosion,which can not be measured directly in seawater.The results show that the static magnetic field related with corrosion and anticorrosion is a kind of noteworthy obstacle signal for degaussed ships.
文摘The description of the received new results of field geological (teсtonophysical) study of massifs of rocks is provided: tectonic jointing, explosive and folded deformations, mirrors of slidings, tectonic motions of blocks of breeds. Reconstruction of fields of tension according to geological data of the certain massif of the Chatkalo-Kurama mountain area (Tien-Shan)—a coastal zone of the Charvak reservoir and the Almalyk mining industrial region is executed. The multidirectional motions of blocks of rocks in the massif of a coastal zone of the Charvak reservoir connected with tectonic and technogenic factors are revealed. The scheme of kinematics and the intense deformed condition of blocks of the Almalyk district is received. Here the regional field of tension with horizontal and submeridional orientation of an axis of the main normal tension of compression at the inclined provision of two other axes are observed. The received results testify to opportunities field the tectonophysical of methods for obtaining important data on kinematics and dynamics of massifs of rocks, tectonic blocks, and features of their deformation. Such studying of the massif of rocks before the beginning and in the course of performance of work on objects of the national economy is important for the choice of design and optimum parameters of laying of excavations, control of a condition of their boards and walls, definition of strategy of safety of conducting mining operations and also seismic stability of constructions.
文摘This is a paper of analysis and research dealing with the dynamic process and pattern offibre in an electrostatic field. The paper first discusses the distribution of the electric field in spaceand describes in detail the various manners of electrification of fibres and the changing patternbefore and after their entrance into the field. It then introduces the gravity of the fibre and theforce of the airflow transporting the fibre, and finally, a group of motion equations from thefibre are derived. Replacing the parameters in the equations with the experimental data, the nu-merical solutions can be obtained and the motion loci in different environments will be drawn bythe computer. The loci conform basically with the results obtained by stroboflash photography.