Setosphaeria turcica,an essential phytopathogenic fungus,is the primary cause of serious yield losses in corn; however,its pathogenic mechanism is poorly understood.We cloned STK2,a newly discovered mitogen-activated ...Setosphaeria turcica,an essential phytopathogenic fungus,is the primary cause of serious yield losses in corn; however,its pathogenic mechanism is poorly understood.We cloned STK2,a newly discovered mitogen-activated protein kinase gene with a deduced amino acid sequence that is 96% identical to MAK2 from Phaeosphaeria nodorum,56% identical to KSS1 and 57% identical to FUS3 from Saccharomyces cerevisiae.To deduce Stk2 function in S.turcica and to identify the genetic relationship between STK2 and KSS1/FUS3 from S.cerevisiae,a restructured vector containing the open reading frame of STK2 was transformed into a fus3/kss1 double deletion mutant of S.cerevisiae.The results show that the STK2 complementary strain clearly formed pseudohyphae and ascospores,and the strain grew on the surface of the medium after rinsing with sterile water and the characteristics of the complementary strain was the same as the wild-type strain.Moreover,STK2 complemented the function of KSS1 in filamentation and invasive growth,as well as the mating behavior of FUS3 in S.cerevisiae,however,its exact functions in S.turcica will be studied in the future research.展开更多
Currently,laser-induced structural modifications in optical materials have been an active field of research.In this paper,we reported structural modifications in the bulk of sapphire due to picosecond(ps)laser filamen...Currently,laser-induced structural modifications in optical materials have been an active field of research.In this paper,we reported structural modifications in the bulk of sapphire due to picosecond(ps)laser filamentation and analyzed the ionization dynamics of the filamentation.Numerical simulations uncovered that the high-intensity ps laser pulses generate plasma through multi-photon and avalanche ionizations that leads to the creation of two distinct types of structural changes in the material.The experimental bulk modifications consist of a void like structures surrounded by cracks which are followed by a submicrometer filamentary track.By increasing laser energy,the length of the damage and filamentary track appeared to increase.In addition,the transverse diameter of the damage zone increased due to the electron plasma produced by avalanche ionizations,but no increase in the filamentary zone diameter was observed with increasing laser energy.展开更多
Recent progress in filament-induced atmospheric sensing is reviewed. Self-guided propagation of ultrashort laser pulses in air induces laser filamentation. All molecules in the path of a filament can be dissociated in...Recent progress in filament-induced atmospheric sensing is reviewed. Self-guided propagation of ultrashort laser pulses in air induces laser filamentation. All molecules in the path of a filament can be dissociated into highly excited fragments, resulting in emission of characteristic fluorescence spectra. The fluorescence spectra provide information about the various molecules in the filaments. By using a filament-induced "fingerprinting" fluorescence technique, molecules in the atmosphere can be identified.展开更多
The femtosecond filamentation in the classical and high-order Kerr (HOK) models is numerically investigated by adopting multi-photon ionization (MPI) cross section with different values. It is found that in the ca...The femtosecond filamentation in the classical and high-order Kerr (HOK) models is numerically investigated by adopting multi-photon ionization (MPI) cross section with different values. It is found that in the case that the MPI cross section is relatively small, there exists a big difference between the electron density as well as clamped intensity calculated in the classical model and those calculated in the HOK one, while in the case that the MPI cross section is relatively large, the electron density and clamped intensity calculated in the two models are nearly in agreement with each other, and under this circumstance, even if the higher-order nonlinear terms do exist, the free-charge generation and the associated defocusing in a filament are enough to mask their effects. The different behaviors of the maximum intensity and on-axis electron density at the collapse position with the pulse duration provides an approach to determine which effect plays the dominant defocusing role. These results demonstrate that it is ionization that results in the difference between the two models.展开更多
We present an experimental investigation of a filamentation-assisted fourth-order nonlinear optical process in KTP crystals pumped by intense 1.53 eV (807 nm) femtosecond laser pulses. Femtosecond light pulses at 2....We present an experimental investigation of a filamentation-assisted fourth-order nonlinear optical process in KTP crystals pumped by intense 1.53 eV (807 nm) femtosecond laser pulses. Femtosecond light pulses at 2.58 eV (480 nm) are generated by the fourth-order nonlinear polarization (p(4) (ω2) = X(4) (ω2, ω, ω, ω, -ω1)E3 (ω)E* (ω1), where E(w) corresponds to the pump frequency and E(wl) to the supercontinuum generated through filamentation). If the system is seeded by a laser beam at ω1 or ω2 and there are spatial and temporal overlaps with the pump beam, E(ω1) and E(ω2) are simultaneously amplified. When the intensity of the seed laser beam exceeds a certain intensity threshold, the contribution of p(4) (ω) = X(4) (ω, ω1, ω2, -ω, -ω)E(ω1)E(ω2)(E* (ω))2 becomes non-negligible, and the amplification weakens. The conversion efficiency from the pump to the signal at 2.58 eV (480 nm) attains to 0.1%.展开更多
The intensity of third harmonic emission in air filamentation disturbed by copper fibers and alcohol droplets has been investigated experimentally. Enhancement of the third harmonic emission up to more than one order ...The intensity of third harmonic emission in air filamentation disturbed by copper fibers and alcohol droplets has been investigated experimentally. Enhancement of the third harmonic emission up to more than one order of magnitude has been observed. The physical mechanism of third harmonic enhancement is attributed to suppression of the destructive interference by comparison of the experimental results and it is closely related to the type, size, and relative position of the obstacles.展开更多
In the paper, relativistic filamentation of intense laser beam in inhomogeneous plasma is investigated based on the nonparaxial region theory. The results show that, relativistic nonlinearity plays a main role in beam...In the paper, relativistic filamentation of intense laser beam in inhomogeneous plasma is investigated based on the nonparaxial region theory. The results show that, relativistic nonlinearity plays a main role in beam filamentation, and plasma inhomogeneity further reinforces the beam filamentation. The combination effects of relativistic nonlinearity and plasma inhomogeneity can generate particularly intense and short pulse laser. However, plasma inhomogeneity leads to obvious filamentation instability.展开更多
The new field of mitochondrial filamentation and its first potential applications are just getting underway (1-7), following a series of pilot experiments in our laboratory over the past few decades (8-14). I should l...The new field of mitochondrial filamentation and its first potential applications are just getting underway (1-7), following a series of pilot experiments in our laboratory over the past few decades (8-14). I should like to give a brief overview of the role that some new methods are playing in this emerging area of physiological bioenergetics, supported by a few references to our contributions as I scarcely have the faculties now to understand other specific contributions. This new field is brimming with promises for medicine, science and society, in general. I cannot and must not be concrete or comprehensive, because I honestly feel that it is now that matters are really beginning to take off, assisted by the most appropriate international capabilities.展开更多
The filamentation instability was observed in the interaction of two counter-streaming laser ablated plasma flows, which were supersonic, collisionless, and also closely relevant to astrophysical conditions. The plasm...The filamentation instability was observed in the interaction of two counter-streaming laser ablated plasma flows, which were supersonic, collisionless, and also closely relevant to astrophysical conditions. The plasma flows were created by irradiating a pair of oppositely standing plastic (CH) foils with Ins-pulsed laser beams of total energy of 1.7 kJ in two laser spots. With characteristics diagnosed in experiments, the calculated features of Weibel-type filaments are in good agreement with measurements.展开更多
In this study,an optical setup for generating terahertz(THz)pulses through a two-color femtosecond laser filament was carefully designed to achieve a precise overlap of two-color laser pulses in space and time.β-bari...In this study,an optical setup for generating terahertz(THz)pulses through a two-color femtosecond laser filament was carefully designed to achieve a precise overlap of two-color laser pulses in space and time.β-barium borate(BBO),α-BBO,and a dual-wavelength plate were used to compensate the phase delay of the two-color lasers.Tilting ofα-BBO could further realize the precise spatial overlap of the two beams by counteracting the walk-off effect.The maximum out-put THz pulse energy reached 21μJ in argon gas when using a commercial Ti:sapphire laser with a pulse energy of 6 mJ at a 1 kHz repetition rate.The corresponding conversion efficiency exceeded 0.35%.展开更多
An experimental investigation of the length and resistance of the laser plasma channel generated by filamentation of fs laser pulses in air was presented. It was found that the length of the plasma channel was differe...An experimental investigation of the length and resistance of the laser plasma channel generated by filamentation of fs laser pulses in air was presented. It was found that the length of the plasma channel was different from that of the laser filament. This phenomenon was commensurate with a special self-guide mechanism without ionization. Through increase of the laser energy the plasma channel could be prolonged and the resistance could be reduced. To get even lower resistance, more effective control would be needed over the multi-filament. The lifetime of the plasma channel was increased by a factor of 4.5 by pulse sequences, which were generated by detuning the regenerative amplifier in the chirped pulse amplification (CPA) laser system.展开更多
The development of small-scale self-focusing in a nonlinear Kerr medium after preliminary self-filtering of a laser beam propagating in free space is studied numerically.It is shown that,under definite conditions,due ...The development of small-scale self-focusing in a nonlinear Kerr medium after preliminary self-filtering of a laser beam propagating in free space is studied numerically.It is shown that,under definite conditions,due to self-filtering,filamentation instability(beam splitting into filaments)either occurs at significantly larger values of the B-integral,or does not occur at all.In the latter case,there develops the honeycomb instability revealed in this work.This instability is the formation of a random honeycomb structure in the beam cross-section.It is shown that self-filtering can significantly increase the permissible values of the B-integral,at which the beam quality remains acceptable.展开更多
Cytidine triphosphate synthase(CTPS)plays a pivotal role in the de novo synthesis of cytidine triphosphate(CTP),a fundamental building block for RNA and DNA that is essential for life.CTPS is capable of directly bindi...Cytidine triphosphate synthase(CTPS)plays a pivotal role in the de novo synthesis of cytidine triphosphate(CTP),a fundamental building block for RNA and DNA that is essential for life.CTPS is capable of directly binding to all four nucleotide triphosphates:adenine triphosphate,uridine triphosphate,CTP,and guanidine triphosphate.Furthermore,CTPS can form cytoophidia in vivo and metabolic filaments in vitro,undergoing regulation at multiple levels.CTPS is considered a potential therapeutic target for combating invasions or infections by viral or prokaryotic pathogens.Utilizing cryo-electron microscopy,we determined the structure of Escherichia coli CTPS(ecCTPS)filament in complex with CTP,nicotinamide adenine dinucleotide(NADH),and the covalent inhibitor 6-diazo-5-oxo-L-norleucine(DON),achieving a resolution of 2.9A.We constructed a phylogenetic tree based on differences in filament-forming interfaces and designed a variant to validate our hypothesis,providing an evolutionary perspective on CTPS filament formation.Our computational analysis revealed a solvent-accessible ammonia tunnel upon DON binding.Through comparative structural analysis,we discern a distinct mode of CTP binding of ecCTPS that differs from eukaryotic counterparts.Combining biochemical assays and structural analysis,we determined and validated the synergistic inhibitory effects of CTP with NADH or adenine on CTPS.Our results expand our comprehension of the diverse regulatory aspects of CTPS and lay a foundation for the design of specific inhibitors targeting prokaryotic CTPS.展开更多
In this work we present experiments by focusing 42 femtosecond laser pulses in air using three differentfocal length lenses: f=100, 30 and 5 cm. For the longest focal length, only the filament, which is aweak plasma c...In this work we present experiments by focusing 42 femtosecond laser pulses in air using three differentfocal length lenses: f=100, 30 and 5 cm. For the longest focal length, only the filament, which is aweak plasma column,is observed. When the shorter focal length lens is used, a high density plasma isgenerated near the geometrical focus and coexists with a weak plasma channel of the filamemt. Under thetightest focusing condition, filamentation is prevented and only a strong plasma volume appears at tehgeometrical focus.展开更多
The spatial distribution of the forward-propagating amplified spontaneous emission(ASE) of nitrogen molecular ions during femtosecond laser filamentation in air is studied via numerical simulations. The results sugges...The spatial distribution of the forward-propagating amplified spontaneous emission(ASE) of nitrogen molecular ions during femtosecond laser filamentation in air is studied via numerical simulations. The results suggest that the divergence angle and signal intensity are extremely sensitive to the external focal length. Concurrently, we show that the optical Kerr effect plays a significant role in concentrating the directivity of ASE signals, particularly in cases of loose focusing. Furthermore,the simulations demonstrate that ASE signals are enhanced for a tight focus, although the corresponding filament length is shorter. The main physical mechanism underlying this process is the competition between the plasma defocusing and optical Kerr effects. The result is important for filamentation-based light detection and ranging applied to remote sensing.展开更多
Broadband and energetic terahertz (THz) pulses can be remotely generated in air through filamentation. We review such THz generation and detection in femtosecond Ti-sapphire laser induced remote filaments. New resul...Broadband and energetic terahertz (THz) pulses can be remotely generated in air through filamentation. We review such THz generation and detection in femtosecond Ti-sapphire laser induced remote filaments. New results are presented on the direct relationship between THz generation in a two color filament and induced N2 fluorescence through population trapping during molecular alignment and revival in air. This further supports the new technique of remote THz detection in air through the sensitive measurement of N2 fluorescence.展开更多
Bacterial antimicrobial resistance(AMR)is a severe threat to global health and development.Under the stimulation of antibiotics,bacterial cells can undergo filamentation and generate daughter cells with stronger AMR.T...Bacterial antimicrobial resistance(AMR)is a severe threat to global health and development.Under the stimulation of antibiotics,bacterial cells can undergo filamentation and generate daughter cells with stronger AMR.The current research on bacterial AMR mechanism is mainly conducted with a population of cells.However,bacterial cells exhibit heteroresistance,making the study at population level not reliable.Herein,we developed single bacterial cell metabolic profiling by mass spectrometry(MS)to study bacterial AMR at single-cell level.By utilizing a microprobe controlled by a microoperation platform,single filamentous extended spectrum beta-lactamase(ESBL)producing Escherichia coli(ESBL-E.coli)cells generated by ceftriaxone sodium stimulation can be extracted and spray-ionized for MS analysis.Heterogeneous among ESBL-E.coli cells under the same antibiotic stimulus condition was observed from mass spectra as well as cell morphology.The metabolic profiles by MS of different individual cells can be clustered into subgroups well in accordance with bacterial cell length.Metabolic pathways including arginine and proline metabolism,as well as cysteine and methionine metabolism were disclosed to play an important role in the bacterial SOS-associated filamentation against antibiotics.The microprobe electrospray ionization-MS-based single bacterial cell analysis method is promising in the study of various bacterial AMR mechanism and can reveal the heterogeneity of bacterial AMR from-cell-to-cell.展开更多
The filamentation characteristics of femtosecond laser pulses in ZK7 glass are in- vestigated experimentally as a function of initial negative chirps. It is found that the filament threshold power grows rapidly and th...The filamentation characteristics of femtosecond laser pulses in ZK7 glass are in- vestigated experimentally as a function of initial negative chirps. It is found that the filament threshold power grows rapidly and the filament length extends over a long distance with increasing initial temporal chirps. The measurement of supercon- tinuum reveals that the plasma generation process within filamentation becomes weaker as the initial negative chirp increases, leading to a self-guiding long light channel dominated by Kerr nonlinearity. The interference of transverse rings in multifilamentation of the chirped laser pulses is observed as well. Analyses and discussions give an interpretation of this chirp-induced ionization-free filamenta- tion. These results indicate that initial chirps will play a crucial role in the filament formation of ultrashort laser pulses in transparent media.展开更多
We report a universal approach based on the surface plasmon resonances(SPRs) attained in filamentation in water doped with gold nanoparticles for enhancing the nonlinear refractive index. The filament-induced supercon...We report a universal approach based on the surface plasmon resonances(SPRs) attained in filamentation in water doped with gold nanoparticles for enhancing the nonlinear refractive index. The filament-induced supercontinuum spectrum in water overlaps with SPRs of gold nanospheres, which further leads to a modification on the Kerr nonlinear refractive index. In our experiment, the measured nonlinear refractive index(n_2) in water doped with gold nanoparticles increases by six times, as compared with that in pure water. Such enhancement may be useful for filament-induced nonlinear applications with modest incident intensity.展开更多
The effects of turbulence intensity and turbulence region on the distribution of femtosecond laser filaments are experimentally elaborated.Through the ultrasonic signals emitted by the filaments,it is observed that in...The effects of turbulence intensity and turbulence region on the distribution of femtosecond laser filaments are experimentally elaborated.Through the ultrasonic signals emitted by the filaments,it is observed that increasing turbulence intensity and an expanding turbulence active region cause an increase in the start position of the filament and a decrease in filament length,which can be well explained by theoretical calculation.It is also observed that the random perturbation of the air refractive index caused by atmospheric turbulence expands the spot size of the filament.Additionally,when the turbulence refractive index structure constant reaches 8.37×10^(-12)m^(-2/3),multiple filaments are formed.Furthermore,the standard deviation of the transverse displacement of filament is found to be proportional to the square root of the turbulent structure constant under the experimental turbulence parameters in this paper.These results contribute to the study of femtosecond laser propagation mechanisms in complex atmospheric turbulence conditions.展开更多
基金supported by the National Natural Science Foundation of China(30471126 and 31171805)
文摘Setosphaeria turcica,an essential phytopathogenic fungus,is the primary cause of serious yield losses in corn; however,its pathogenic mechanism is poorly understood.We cloned STK2,a newly discovered mitogen-activated protein kinase gene with a deduced amino acid sequence that is 96% identical to MAK2 from Phaeosphaeria nodorum,56% identical to KSS1 and 57% identical to FUS3 from Saccharomyces cerevisiae.To deduce Stk2 function in S.turcica and to identify the genetic relationship between STK2 and KSS1/FUS3 from S.cerevisiae,a restructured vector containing the open reading frame of STK2 was transformed into a fus3/kss1 double deletion mutant of S.cerevisiae.The results show that the STK2 complementary strain clearly formed pseudohyphae and ascospores,and the strain grew on the surface of the medium after rinsing with sterile water and the characteristics of the complementary strain was the same as the wild-type strain.Moreover,STK2 complemented the function of KSS1 in filamentation and invasive growth,as well as the mating behavior of FUS3 in S.cerevisiae,however,its exact functions in S.turcica will be studied in the future research.
基金National Natural Science Foundation of China(51575013,51275011)National Key R&D Program of China(2018 YFB1107500)
文摘Currently,laser-induced structural modifications in optical materials have been an active field of research.In this paper,we reported structural modifications in the bulk of sapphire due to picosecond(ps)laser filamentation and analyzed the ionization dynamics of the filamentation.Numerical simulations uncovered that the high-intensity ps laser pulses generate plasma through multi-photon and avalanche ionizations that leads to the creation of two distinct types of structural changes in the material.The experimental bulk modifications consist of a void like structures surrounded by cracks which are followed by a submicrometer filamentary track.By increasing laser energy,the length of the damage and filamentary track appeared to increase.In addition,the transverse diameter of the damage zone increased due to the electron plasma produced by avalanche ionizations,but no increase in the filamentary zone diameter was observed with increasing laser energy.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB808105)the International Science and Technology Collaboration Program,China(Grant Nos.2010DFA04410 and 11530700900)+1 种基金the National Key Scientific Instrument Project(Grant No.2012YQ150092)the Canada Research Chair,Natural Sciences and Engineering Research Council of Canada,Canada Foundation for Innovation,Canadian Institute for Photonics Innovation and le FQRNT
文摘Recent progress in filament-induced atmospheric sensing is reviewed. Self-guided propagation of ultrashort laser pulses in air induces laser filamentation. All molecules in the path of a filament can be dissociated into highly excited fragments, resulting in emission of characteristic fluorescence spectra. The fluorescence spectra provide information about the various molecules in the filaments. By using a filament-induced "fingerprinting" fluorescence technique, molecules in the atmosphere can be identified.
基金supported by the National Basic Research Program of China(Grant No.2013CB922200)the National Natural Science Foundation of China(Grant Nos.11034003 and 11474129)+1 种基金the Research Fund for the Doctoral Program of Higher Education in China(Grant No.20130061110021)the Graduate Innovation Fund of Jilin University,China(Grant No.2015091)
文摘The femtosecond filamentation in the classical and high-order Kerr (HOK) models is numerically investigated by adopting multi-photon ionization (MPI) cross section with different values. It is found that in the case that the MPI cross section is relatively small, there exists a big difference between the electron density as well as clamped intensity calculated in the classical model and those calculated in the HOK one, while in the case that the MPI cross section is relatively large, the electron density and clamped intensity calculated in the two models are nearly in agreement with each other, and under this circumstance, even if the higher-order nonlinear terms do exist, the free-charge generation and the associated defocusing in a filament are enough to mask their effects. The different behaviors of the maximum intensity and on-axis electron density at the collapse position with the pulse duration provides an approach to determine which effect plays the dominant defocusing role. These results demonstrate that it is ionization that results in the difference between the two models.
基金Project supported by the National Basic Research Program,China (Grant No. 2006CB806007)the National Natural Science Foundation of China (Grant Nos. 10574006,10634020 and 10821062)
文摘We present an experimental investigation of a filamentation-assisted fourth-order nonlinear optical process in KTP crystals pumped by intense 1.53 eV (807 nm) femtosecond laser pulses. Femtosecond light pulses at 2.58 eV (480 nm) are generated by the fourth-order nonlinear polarization (p(4) (ω2) = X(4) (ω2, ω, ω, ω, -ω1)E3 (ω)E* (ω1), where E(w) corresponds to the pump frequency and E(wl) to the supercontinuum generated through filamentation). If the system is seeded by a laser beam at ω1 or ω2 and there are spatial and temporal overlaps with the pump beam, E(ω1) and E(ω2) are simultaneously amplified. When the intensity of the seed laser beam exceeds a certain intensity threshold, the contribution of p(4) (ω) = X(4) (ω, ω1, ω2, -ω, -ω)E(ω1)E(ω2)(E* (ω))2 becomes non-negligible, and the amplification weakens. The conversion efficiency from the pump to the signal at 2.58 eV (480 nm) attains to 0.1%.
基金supported by the National Key Technology R&D Program of the Ministry of Science and Technology,China(Grant No.2012BAC23B00)the National Natural Science Foundation of China(Grants No.11404335)
文摘The intensity of third harmonic emission in air filamentation disturbed by copper fibers and alcohol droplets has been investigated experimentally. Enhancement of the third harmonic emission up to more than one order of magnitude has been observed. The physical mechanism of third harmonic enhancement is attributed to suppression of the destructive interference by comparison of the experimental results and it is closely related to the type, size, and relative position of the obstacles.
文摘In the paper, relativistic filamentation of intense laser beam in inhomogeneous plasma is investigated based on the nonparaxial region theory. The results show that, relativistic nonlinearity plays a main role in beam filamentation, and plasma inhomogeneity further reinforces the beam filamentation. The combination effects of relativistic nonlinearity and plasma inhomogeneity can generate particularly intense and short pulse laser. However, plasma inhomogeneity leads to obvious filamentation instability.
文摘The new field of mitochondrial filamentation and its first potential applications are just getting underway (1-7), following a series of pilot experiments in our laboratory over the past few decades (8-14). I should like to give a brief overview of the role that some new methods are playing in this emerging area of physiological bioenergetics, supported by a few references to our contributions as I scarcely have the faculties now to understand other specific contributions. This new field is brimming with promises for medicine, science and society, in general. I cannot and must not be concrete or comprehensive, because I honestly feel that it is now that matters are really beginning to take off, assisted by the most appropriate international capabilities.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11074297,11674146,and 11220101002)the National Basic Research Program of China(Grant No.2013CBA01500
文摘The filamentation instability was observed in the interaction of two counter-streaming laser ablated plasma flows, which were supersonic, collisionless, and also closely relevant to astrophysical conditions. The plasma flows were created by irradiating a pair of oppositely standing plastic (CH) foils with Ins-pulsed laser beams of total energy of 1.7 kJ in two laser spots. With characteristics diagnosed in experiments, the calculated features of Weibel-type filaments are in good agreement with measurements.
基金National Natural Science Foundation of China(12061131010,12074198)Russian Science Foundation(21-49-00023).
文摘In this study,an optical setup for generating terahertz(THz)pulses through a two-color femtosecond laser filament was carefully designed to achieve a precise overlap of two-color laser pulses in space and time.β-barium borate(BBO),α-BBO,and a dual-wavelength plate were used to compensate the phase delay of the two-color lasers.Tilting ofα-BBO could further realize the precise spatial overlap of the two beams by counteracting the walk-off effect.The maximum out-put THz pulse energy reached 21μJ in argon gas when using a commercial Ti:sapphire laser with a pulse energy of 6 mJ at a 1 kHz repetition rate.The corresponding conversion efficiency exceeded 0.35%.
基金supported by National Basic Research Program of China (No.2006CB806000)National Natural Science Foundation of China (No.10674145)
文摘An experimental investigation of the length and resistance of the laser plasma channel generated by filamentation of fs laser pulses in air was presented. It was found that the length of the plasma channel was different from that of the laser filament. This phenomenon was commensurate with a special self-guide mechanism without ionization. Through increase of the laser energy the plasma channel could be prolonged and the resistance could be reduced. To get even lower resistance, more effective control would be needed over the multi-filament. The lifetime of the plasma channel was increased by a factor of 4.5 by pulse sequences, which were generated by detuning the regenerative amplifier in the chirped pulse amplification (CPA) laser system.
基金supported by the Ministry of Science and Higher Education of the Russian Federation(075-15-2020906,Center of Excellence‘Center of Photonics’)。
文摘The development of small-scale self-focusing in a nonlinear Kerr medium after preliminary self-filtering of a laser beam propagating in free space is studied numerically.It is shown that,under definite conditions,due to self-filtering,filamentation instability(beam splitting into filaments)either occurs at significantly larger values of the B-integral,or does not occur at all.In the latter case,there develops the honeycomb instability revealed in this work.This instability is the formation of a random honeycomb structure in the beam cross-section.It is shown that self-filtering can significantly increase the permissible values of the B-integral,at which the beam quality remains acceptable.
基金supported by the grants from the Ministry of Science and Technology of China(No.2021YFA0804700)National Natural Science Foundation of China(Grant Nos.32370744 and 32350710195)+1 种基金Shanghai Science and Technology Commission(No.20JC1410500)UK Medical Research Council(Grant Nos.MC_UU_12021/3 and MC_U137788471)for grants to J.L.L.
文摘Cytidine triphosphate synthase(CTPS)plays a pivotal role in the de novo synthesis of cytidine triphosphate(CTP),a fundamental building block for RNA and DNA that is essential for life.CTPS is capable of directly binding to all four nucleotide triphosphates:adenine triphosphate,uridine triphosphate,CTP,and guanidine triphosphate.Furthermore,CTPS can form cytoophidia in vivo and metabolic filaments in vitro,undergoing regulation at multiple levels.CTPS is considered a potential therapeutic target for combating invasions or infections by viral or prokaryotic pathogens.Utilizing cryo-electron microscopy,we determined the structure of Escherichia coli CTPS(ecCTPS)filament in complex with CTP,nicotinamide adenine dinucleotide(NADH),and the covalent inhibitor 6-diazo-5-oxo-L-norleucine(DON),achieving a resolution of 2.9A.We constructed a phylogenetic tree based on differences in filament-forming interfaces and designed a variant to validate our hypothesis,providing an evolutionary perspective on CTPS filament formation.Our computational analysis revealed a solvent-accessible ammonia tunnel upon DON binding.Through comparative structural analysis,we discern a distinct mode of CTP binding of ecCTPS that differs from eukaryotic counterparts.Combining biochemical assays and structural analysis,we determined and validated the synergistic inhibitory effects of CTP with NADH or adenine on CTPS.Our results expand our comprehension of the diverse regulatory aspects of CTPS and lay a foundation for the design of specific inhibitors targeting prokaryotic CTPS.
文摘In this work we present experiments by focusing 42 femtosecond laser pulses in air using three differentfocal length lenses: f=100, 30 and 5 cm. For the longest focal length, only the filament, which is aweak plasma column,is observed. When the shorter focal length lens is used, a high density plasma isgenerated near the geometrical focus and coexists with a weak plasma channel of the filamemt. Under thetightest focusing condition, filamentation is prevented and only a strong plasma volume appears at tehgeometrical focus.
基金supported by the National Key R&D Program of China (No.2018YFB0504400)。
文摘The spatial distribution of the forward-propagating amplified spontaneous emission(ASE) of nitrogen molecular ions during femtosecond laser filamentation in air is studied via numerical simulations. The results suggest that the divergence angle and signal intensity are extremely sensitive to the external focal length. Concurrently, we show that the optical Kerr effect plays a significant role in concentrating the directivity of ASE signals, particularly in cases of loose focusing. Furthermore,the simulations demonstrate that ASE signals are enhanced for a tight focus, although the corresponding filament length is shorter. The main physical mechanism underlying this process is the competition between the plasma defocusing and optical Kerr effects. The result is important for filamentation-based light detection and ranging applied to remote sensing.
基金supported in part by NSERC,Canada Research Chair,the Canada Foundation for Innovation,the Canadian Institute for Photonics Innovation,and leFonds Québécois pour la Recherche sur la Nature et les Technologies
文摘Broadband and energetic terahertz (THz) pulses can be remotely generated in air through filamentation. We review such THz generation and detection in femtosecond Ti-sapphire laser induced remote filaments. New results are presented on the direct relationship between THz generation in a two color filament and induced N2 fluorescence through population trapping during molecular alignment and revival in air. This further supports the new technique of remote THz detection in air through the sensitive measurement of N2 fluorescence.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.22022401,22074022 and 21934001)the Ministry of Science and Technology of China(No.2020YFF0304502)。
文摘Bacterial antimicrobial resistance(AMR)is a severe threat to global health and development.Under the stimulation of antibiotics,bacterial cells can undergo filamentation and generate daughter cells with stronger AMR.The current research on bacterial AMR mechanism is mainly conducted with a population of cells.However,bacterial cells exhibit heteroresistance,making the study at population level not reliable.Herein,we developed single bacterial cell metabolic profiling by mass spectrometry(MS)to study bacterial AMR at single-cell level.By utilizing a microprobe controlled by a microoperation platform,single filamentous extended spectrum beta-lactamase(ESBL)producing Escherichia coli(ESBL-E.coli)cells generated by ceftriaxone sodium stimulation can be extracted and spray-ionized for MS analysis.Heterogeneous among ESBL-E.coli cells under the same antibiotic stimulus condition was observed from mass spectra as well as cell morphology.The metabolic profiles by MS of different individual cells can be clustered into subgroups well in accordance with bacterial cell length.Metabolic pathways including arginine and proline metabolism,as well as cysteine and methionine metabolism were disclosed to play an important role in the bacterial SOS-associated filamentation against antibiotics.The microprobe electrospray ionization-MS-based single bacterial cell analysis method is promising in the study of various bacterial AMR mechanism and can reveal the heterogeneity of bacterial AMR from-cell-to-cell.
基金the National Natural Science Foundation of China (Grant No. 60637020)
文摘The filamentation characteristics of femtosecond laser pulses in ZK7 glass are in- vestigated experimentally as a function of initial negative chirps. It is found that the filament threshold power grows rapidly and the filament length extends over a long distance with increasing initial temporal chirps. The measurement of supercon- tinuum reveals that the plasma generation process within filamentation becomes weaker as the initial negative chirp increases, leading to a self-guiding long light channel dominated by Kerr nonlinearity. The interference of transverse rings in multifilamentation of the chirped laser pulses is observed as well. Analyses and discussions give an interpretation of this chirp-induced ionization-free filamenta- tion. These results indicate that initial chirps will play a crucial role in the filament formation of ultrashort laser pulses in transparent media.
基金supported by the National Key Research and Development Program of China(No.2018YFB0504400)the National Natural Science Foundation of China(Nos.61505106 and 11504237)+1 种基金the Innovation Program of Shanghai Municipal Education Commission(No.201701070007E00007)and the Shanghai Chenguang Project(No.15CG51)
文摘We report a universal approach based on the surface plasmon resonances(SPRs) attained in filamentation in water doped with gold nanoparticles for enhancing the nonlinear refractive index. The filament-induced supercontinuum spectrum in water overlaps with SPRs of gold nanospheres, which further leads to a modification on the Kerr nonlinear refractive index. In our experiment, the measured nonlinear refractive index(n_2) in water doped with gold nanoparticles increases by six times, as compared with that in pure water. Such enhancement may be useful for filament-induced nonlinear applications with modest incident intensity.
基金supported by the National Key Research and Development Program of China(No.2018YFB0504400)the Fundamental Research Funds for the Central Universities(No.63223052)。
文摘The effects of turbulence intensity and turbulence region on the distribution of femtosecond laser filaments are experimentally elaborated.Through the ultrasonic signals emitted by the filaments,it is observed that increasing turbulence intensity and an expanding turbulence active region cause an increase in the start position of the filament and a decrease in filament length,which can be well explained by theoretical calculation.It is also observed that the random perturbation of the air refractive index caused by atmospheric turbulence expands the spot size of the filament.Additionally,when the turbulence refractive index structure constant reaches 8.37×10^(-12)m^(-2/3),multiple filaments are formed.Furthermore,the standard deviation of the transverse displacement of filament is found to be proportional to the square root of the turbulent structure constant under the experimental turbulence parameters in this paper.These results contribute to the study of femtosecond laser propagation mechanisms in complex atmospheric turbulence conditions.