[ Objective ] The study aimed at treating wastewater treatment plant (WWTP) effluent by using bio-film reactor with filamentous bamboo as bio-carrier. [ Method] With the aid of a continuous flow reactor, a bio-film ...[ Objective ] The study aimed at treating wastewater treatment plant (WWTP) effluent by using bio-film reactor with filamentous bamboo as bio-carrier. [ Method] With the aid of a continuous flow reactor, a bio-film reactor using filamentous bamboo as bio-carrier was used to treat WWTP effluent with low C/N ratio, and the removal effects of CODc,, TN (total nitrogen), and NO3--N in the wastewater were analyzed.[ Result ] The average removal rates of CODcr, TN, and NO3- -N reached 47.7%, 23.6% and 34.5% when the C/N ratio of influent was around 2. In addi- tion, a stable bio-film was formed very well in the secondary effluent with low C/N ratio and hardly degradable organic pollutants. The pollutants could be removed effectively because of the excellent surface characteristics and compositions of filamentous bamboo. [ Conclusion] The research provides a new method to treat WWTP effluent with low C/N ratio.展开更多
基金Supported by the Scientific Research Foundation for Postgraduates of ZhengZhou University (A1003) Open Foundation of Provincial Key Laboratory of Environmental Material and Environmental Engineering (K11027)
文摘[ Objective ] The study aimed at treating wastewater treatment plant (WWTP) effluent by using bio-film reactor with filamentous bamboo as bio-carrier. [ Method] With the aid of a continuous flow reactor, a bio-film reactor using filamentous bamboo as bio-carrier was used to treat WWTP effluent with low C/N ratio, and the removal effects of CODc,, TN (total nitrogen), and NO3--N in the wastewater were analyzed.[ Result ] The average removal rates of CODcr, TN, and NO3- -N reached 47.7%, 23.6% and 34.5% when the C/N ratio of influent was around 2. In addi- tion, a stable bio-film was formed very well in the secondary effluent with low C/N ratio and hardly degradable organic pollutants. The pollutants could be removed effectively because of the excellent surface characteristics and compositions of filamentous bamboo. [ Conclusion] The research provides a new method to treat WWTP effluent with low C/N ratio.