Karma alloy thin film strain gauges were fabricated on alumina substrates by magnetron sputtering. The electrical properties of strain gauges annealed at different temperatures were then tested. The surface morphology...Karma alloy thin film strain gauges were fabricated on alumina substrates by magnetron sputtering. The electrical properties of strain gauges annealed at different temperatures were then tested. The surface morphology and phase structure of the Karma alloy thin films were analyzed using X-ray diffraction and scanning electron microscopy. The effect of the annealing temperature on the performance of the Karma alloy thin film strain gauge was also investigated. As the annealing temperature increased, it was found that the resistivity of the thin films decreased, whereas the temperature coefficient of resistance (TCR) of the thin films increased. A Karma alloy thin film strain gauge was annealed at 200 °C, thereby obtaining a gauge factor of 1.7 and a corresponding TCR of 64.8 × 10−6 K−1. The prepared Karma alloy thin film strain gauge had a lower TCR than other strain gauges at room temperature. This result can provide a reference for the preparation and application of Karma alloy thin film strain gauges in specific scenarios.展开更多
Varying the film thickness is a precise route to tune the interfacial strain to manipulate the properties of the multiferroic materials.Here,to explore the effects of the interfacial strain on the properties of the mu...Varying the film thickness is a precise route to tune the interfacial strain to manipulate the properties of the multiferroic materials.Here,to explore the effects of the interfacial strain on the properties of the multiferroic BiFeO_3films,we investigated thickness-dependent structural and polarization evolutions of the BiFeO_3 films.The epitaxial growth with an atomic stacking sequence of BiO/TiO_2 at the interface was confirmed by scanning transmission electron microscopy.Combining X-ray diffraction experiments and first-principles calculations,a thickness-dependent structural evolution was observed from a fully strained tetragonality to a partially relaxed one without any structural phase transition or rotated twins.The tetragonality(c/a) of the BiFeO_3 films increases as the film thickness decreases,while the polarization is in contrast with this trend,and the size effect including the depolarization field plays a crucial role in this contradiction in thinner films.These findings offer an alternative strategy to manipulate structural and polarization properties by tuning the interfacial strain in epitaxial multiferroic thin films.展开更多
The effect of pre-strain on phase transformation of TiNi shape memory alloy film was studied by differential scanning calorimeter measurement (DSC). Compared with un-defarmed TiNi film, the reverse transformation of p...The effect of pre-strain on phase transformation of TiNi shape memory alloy film was studied by differential scanning calorimeter measurement (DSC). Compared with un-defarmed TiNi film, the reverse transformation of pre-strained specimens was elevated to a higher temperature on the first heating, but martensite and reverse transformation on subsequent thermal cycles occurred at a lower temperature. The evolution of transformation behavior in pre-strained TiNi film was related to the change of elastic strain energy, irreversible energy and internal stress field.展开更多
Necking of stubby micro-films of aluminum is investigated numerically by considering tension of a specimen with an initial imperfection used to onset localisation. Plastic anisotropy is represented by two different yi...Necking of stubby micro-films of aluminum is investigated numerically by considering tension of a specimen with an initial imperfection used to onset localisation. Plastic anisotropy is represented by two different yield criteria and strain-gradient effects are accounted for using the visco-plastic finite strain model. Furthermore, the model is extended to isotropic anisotropic hardening (evolving anisotropy). For isotropic hardening plastic anisotropy affects the predicted overall nominal stress level, while the peak stress remains at an overall logarithmic strain corresponding to the hardening exponent. This holds true for both local and nonlocal materials. Anisotropic hardening delays the point of maximum overall nominal stress.展开更多
The bending problem of a magnetic film-nonmagnetic substrate cantilever system is studied by using the principle of energy minimization. Emphasis is placed on the analysis of geometrical and physical parameter depende...The bending problem of a magnetic film-nonmagnetic substrate cantilever system is studied by using the principle of energy minimization. Emphasis is placed on the analysis of geometrical and physical parameter dependence of the neutral plane,internal film stress and strain of the cantilever system,and then the influence of such a parameter on the bending characteristic is presented. The results indicate,owing to the anisotropic expanding feature of the magnetostriction,that the neutral plane is generally anisotropic,and moves downwards rapidly with the increasing thickness ratio. Meanwhile,the bounding rigidity of substrate on the film will de-crease with the increasing thickness ratio,and thus release the film stress,i.e.,it decreases,but the film strain increases. The effect of Poisson’s ratio of the materi-als on the film strain,the stress and the neutral plane in the direction transverse to the magnetization is prominent. For the strain and the stress in the magnetization,however,the role of Poisson’s ratio is inconspicuous. This property is due to the initiative elongating (or contracting) feature of the magnetic film along its mag-netization.展开更多
CaN films with an AlxGa1-xN/AlyGa1-xN superlattice (SL) buffer layer are grown on Si(111) substrates by metal-organic chemical vapor deposition (MOCVD). The structure and strain properties of the samples are stu...CaN films with an AlxGa1-xN/AlyGa1-xN superlattice (SL) buffer layer are grown on Si(111) substrates by metal-organic chemical vapor deposition (MOCVD). The structure and strain properties of the samples are studied by optical microscopy, Raman spectroscopy, x-ray diffractometry and atomic force microscopy. The results show that the strain status and crystalline quality of the CaN layers are strongly dependent on the difference of the Al composition between AlxCa1-xN barriers and AlyCa1-yN wells in the SLs. With a large Al composition difference, the CaN film tends to generate cracks on the surface due to the severe relaxation of the SLs. Otherwise, when using a small Al composition difference, the crystalline quality of the CaN layer degrades due to the poor function of the SLs in filtering dislocations. Under an optimized condition that the Al composition difference equals 0.1, the crack-free and compressive strained CaN film with an improved crystalline quality is achieved. Therefore, the AlxGa1-xN/AlyGal-yN SL buffer layer is a promising buffer structure for growing thick CaN films on Si substrates without crack generation.展开更多
Many distinguished properties of epitaxial ferroelectric thin films can be tunable through the misfit strain.The strain tunability of ferroelectric and dielectric properties in epitaxial lead titanate ultrathin films ...Many distinguished properties of epitaxial ferroelectric thin films can be tunable through the misfit strain.The strain tunability of ferroelectric and dielectric properties in epitaxial lead titanate ultrathin films is numerically investigated by using a phase field model,in which the surface effect of polarization is taken into account.The response of polarization to the applied electric field in the thickness direction is examined with different misfit strains at room temperature.It is found that a compressive misfit strain increases the coercive field and the remanent polarization while a tensile misfit strain decreases both of them.The nonlinear dielectric constants of the thin films with tensile misfit strains are much larger than those of the thin films without misfit strains,which are attributed to the existence of the a/c/a/c multiple domains in the thin films under tensile misfit strains.展开更多
An easy calibration method was presented for in-situ measurement of displacement in the order of nanometer during micro-tensile test for thin films by using CCD camera as a sensing device. The calibration of the sensi...An easy calibration method was presented for in-situ measurement of displacement in the order of nanometer during micro-tensile test for thin films by using CCD camera as a sensing device. The calibration of the sensing camera in the system is a central element part to measure displacement in the order of nanometer using images taken with the camera. This was accomplished by modeling the optical projection through the camera lens and relative locations between the object and camera in 3D space. A set of known 3D points on a plane where the film is located on is projected to an image plane as input data. These points, known as a calibration points, are then used to estimate the projection parameters of the camera. In the measurement system of the micro-scale by CCD camera, the calibration data acquisition and one-to-one matching steps between the image and 3D planes need precise data extraction procedures and repetitive user's operation to calibrate the measuring devices. The lack of the robust image feature extraction and easy matching prevent the practical use of these methods. A data selection method was proposed to overcome these limitations and offer an easy and convenient calibration of a vision system that has the CCD camera and the 3D reference plane with calibration marks of circular type on the surface of the plane. The method minimizes the user's intervention such as the fine tuning of illumination system and provides an efficient calibration method of the vision system for in-situ axial displacement measurement of the micro-tensile materials.展开更多
Flexible magnetic devices, i.e., magnetic devices fabricated on flexible substrates, are very attractive in applications such as detection of magnetic field in an arbitrary surface, non-contact actuators, and microwav...Flexible magnetic devices, i.e., magnetic devices fabricated on flexible substrates, are very attractive in applications such as detection of magnetic field in an arbitrary surface, non-contact actuators, and microwave devices, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Flexible magnetic films are essential for the realization of various functionalities of flexible magnetic devices. To give a comprehensive understanding for flexible magnetic films and related devices, recent advances in the study of flexible magnetic films are reviewed, including fabrication methods, magnetic and transport properties of flexible magnetic films, and their applications in magnetic sensors, actuators, and microwave devices. Our aim is to foster a comprehensive understanding of these films and devices. Three typical methods have been introduced to prepare the flexible magnetic films, by deposition of magnetic films on flexible substrates, by a transfer and bonding approach or by including and then removing sacrificial layers. Stretching or bending the magnetic films is a good way to apply mechanical strain to them, so that magnetic anisotropy, exchange bias, coercivity, and magnetoresistance can be effectively manipulated. Finally, a series of examples is shown to demonstrate the great potential of flexible magnetic films for future applications.展开更多
A comparative study of the crystalline structure, magnetic properties, and transport properties of LSMO films grown on (100)-, (110)-, and (111) LaAlO3(LAO) substrates was carried out. Using atomic force micro...A comparative study of the crystalline structure, magnetic properties, and transport properties of LSMO films grown on (100)-, (110)-, and (111) LaAlO3(LAO) substrates was carried out. Using atomic force microscopy, round, rectangle, and dot surface morphologies were observed in ( 100)-, ( 110)-, and ( 111 )-oriented LSMO films, respectively. Electrical and magnetic characterizations were performed on LSMO films of different orientation to provide evidence for the effect of strain on the magnetotransport properties. The ( 111 )-oriented LSMO film has higher saturation magnetization and lower resistance compared with the (100)- and (110)-oriented LSMO films, which results from the smaller elastic deformation due to the larger elastic modulus along the 〈 111 〉 crystallographic direction.展开更多
SrTiO3 (STO) thin films of different thicknesses were deposited on MgAl2O4 (MAO) substrates to investigate the in-plane strain effect on the soft-mode frequency of the STO films. X-ray reciprocal space mapping (X-RSM)...SrTiO3 (STO) thin films of different thicknesses were deposited on MgAl2O4 (MAO) substrates to investigate the in-plane strain effect on the soft-mode frequency of the STO films. X-ray reciprocal space mapping (X-RSM) results indicate that there was no relaxation of the in-plane lattice strain of the STO films on MAO. Shifts in the soft-mode frequencies with a decrease in the film thickness were observed using terahertz time-domain spectroscopy (THz-TDS). However, despite the larger lattice mismatch between STO and MAO than that between STO and DyScO3 (DSO), the shifts in the soft-mode frequencies of the STO films on MAO were smaller than those on DSO. The results indicate that the soft-mode frequencies of the STO films on MAO are affected by the c-axis (out-of-plane) lengths.展开更多
Stretchable electronics represents a direction of recent development in next-generation semiconductor devices.Such systems have the potential to offer the performance of conventional wafer-based technologies,but they ...Stretchable electronics represents a direction of recent development in next-generation semiconductor devices.Such systems have the potential to offer the performance of conventional wafer-based technologies,but they can be stretched like a rubber band,twisted like a rope, bent over a pencil,and folded like a piece of paper.Isolating the active devices from strains associated with such deformations is an important aspect of design.One strategy involves the shielding of the electronics from deformation of the substrate through insertion of a compliant adhesive layer. This paper establishes a simple,analytical model and validates the results by the finite element method.The results show that a relatively thick,compliant adhesive is effective to reduce the strain in the electronics,as is a relatively short film.展开更多
Nanocrystalline copper films were prepared by sputtering and then in situ straining experiments were performed using a trans- mission electron microscope. Macroscopically, these copper films exhibited very low ductili...Nanocrystalline copper films were prepared by sputtering and then in situ straining experiments were performed using a trans- mission electron microscope. Macroscopically, these copper films exhibited very low ductility (<l%). Dislocation activity was limited in regions far from propagating cracks. Near stable growing cracks, considerable local plasticity was observed. The evidence of slip ac- tivity both within grain interiors and in grain boundaries was also observed. Although some dislocation; moved very fast, others showed rates much lower than those typically measured for bulk copper. Fracture was intergranular, but not brittle. It occurred by linking of microcracks. Microcracks formed within a micrometer or so ahead of the main crack tip, usually within a grain boundary. Linking then took place by the easiest available path.展开更多
We present the specific ab-initio calculations that detail the variations of perovskite BaZrO3 caused by in-plane strain. Specifically, the internal relaxation, which was not captured in the widely used biaxial strain...We present the specific ab-initio calculations that detail the variations of perovskite BaZrO3 caused by in-plane strain. Specifically, the internal relaxation, which was not captured in the widely used biaxial strain model, was included in a complementary manner to lattice relaxation. Density functional theory as well as a hybrid functional method based on a plane wave basis set was employed to calculate the lattice structure, elastic constants, electronic properties and optical properties of perovskite BaZrO3. The lattice parameter c exhibited a clear linear dependence on the imposed in-plane strain, but the Poisson's ratio caused by internal relaxation was smaller than the elastic deformation, indicating an "inelastic" or "plastic" relaxation manner caused by the introduction of internal relaxation. As a result, the related electronic and optical properties of perovskite BaZrO3 were also strongly affected by the in-plane strain, which revealed an effective way to adjust the properties of perovskite BaZrO3 via internal relaxation.展开更多
The nanoindentations were applied to island-shaped regions with metal-induced Si crystallizations. The experimental stress-strain relationship is obtained from the load-depth profile in order to investigate the critic...The nanoindentations were applied to island-shaped regions with metal-induced Si crystallizations. The experimental stress-strain relationship is obtained from the load-depth profile in order to investigate the critical stresses arising at various phase transitions. The stress and strain values at various indentation depths are applied to determine the Gibbs free energy at various phases. The intersections of the Gibbs free energy lines are used to determine the possible paths of phase transitions arising at various indentation depths. All the critical contact stresses corresponding to the various phase transitions at four annealing temperatures were found to be consistent with the experimental results.展开更多
Tensile strain, crystal quality, and surface morphology of 500 nm thick Ge films were improved after rapid thermal annealing at 900 ℃ for a short period (〈 20 s). The films were grown on Si(001) substrates by ul...Tensile strain, crystal quality, and surface morphology of 500 nm thick Ge films were improved after rapid thermal annealing at 900 ℃ for a short period (〈 20 s). The films were grown on Si(001) substrates by ultra-high vacuum chemical vapor deposition. These improvements are attributed to relaxation and defect annihilation in the Ge films. However, after prolonged (〉 20 s) rapid thermal annealing, tensile strain and crystal quality degenerated. This phenomenon results from intensive Si-Ge mixing at high temperature.展开更多
文摘Karma alloy thin film strain gauges were fabricated on alumina substrates by magnetron sputtering. The electrical properties of strain gauges annealed at different temperatures were then tested. The surface morphology and phase structure of the Karma alloy thin films were analyzed using X-ray diffraction and scanning electron microscopy. The effect of the annealing temperature on the performance of the Karma alloy thin film strain gauge was also investigated. As the annealing temperature increased, it was found that the resistivity of the thin films decreased, whereas the temperature coefficient of resistance (TCR) of the thin films increased. A Karma alloy thin film strain gauge was annealed at 200 °C, thereby obtaining a gauge factor of 1.7 and a corresponding TCR of 64.8 × 10−6 K−1. The prepared Karma alloy thin film strain gauge had a lower TCR than other strain gauges at room temperature. This result can provide a reference for the preparation and application of Karma alloy thin film strain gauges in specific scenarios.
基金supported by the National Basic Research Program of China(Grant Nos.2012CB921403 and 2013CB328706)the National Natural Science Foundation of China(Grant Nos.10904030,11004238,11205235,11134012, 11404380,and 11474349)the Strategic Priority Research Program(B) of the Chinese Academy of Sciences(Grant No. XDB07030200)
文摘Varying the film thickness is a precise route to tune the interfacial strain to manipulate the properties of the multiferroic materials.Here,to explore the effects of the interfacial strain on the properties of the multiferroic BiFeO_3films,we investigated thickness-dependent structural and polarization evolutions of the BiFeO_3 films.The epitaxial growth with an atomic stacking sequence of BiO/TiO_2 at the interface was confirmed by scanning transmission electron microscopy.Combining X-ray diffraction experiments and first-principles calculations,a thickness-dependent structural evolution was observed from a fully strained tetragonality to a partially relaxed one without any structural phase transition or rotated twins.The tetragonality(c/a) of the BiFeO_3 films increases as the film thickness decreases,while the polarization is in contrast with this trend,and the size effect including the depolarization field plays a crucial role in this contradiction in thinner films.These findings offer an alternative strategy to manipulate structural and polarization properties by tuning the interfacial strain in epitaxial multiferroic thin films.
文摘The effect of pre-strain on phase transformation of TiNi shape memory alloy film was studied by differential scanning calorimeter measurement (DSC). Compared with un-defarmed TiNi film, the reverse transformation of pre-strained specimens was elevated to a higher temperature on the first heating, but martensite and reverse transformation on subsequent thermal cycles occurred at a lower temperature. The evolution of transformation behavior in pre-strained TiNi film was related to the change of elastic strain energy, irreversible energy and internal stress field.
基金the Danish Technical Research Council in a project entitled Modeling Plasticity at the Micron Scale
文摘Necking of stubby micro-films of aluminum is investigated numerically by considering tension of a specimen with an initial imperfection used to onset localisation. Plastic anisotropy is represented by two different yield criteria and strain-gradient effects are accounted for using the visco-plastic finite strain model. Furthermore, the model is extended to isotropic anisotropic hardening (evolving anisotropy). For isotropic hardening plastic anisotropy affects the predicted overall nominal stress level, while the peak stress remains at an overall logarithmic strain corresponding to the hardening exponent. This holds true for both local and nonlocal materials. Anisotropic hardening delays the point of maximum overall nominal stress.
基金the National Natural Science Foundation of China (Grant No 10762001)the Key Project of the Chinese Ministry of Education (Grant No 206024)the Program for New Century Excellent Talents in University of China (Grant No NCET-2005-0272)
文摘The bending problem of a magnetic film-nonmagnetic substrate cantilever system is studied by using the principle of energy minimization. Emphasis is placed on the analysis of geometrical and physical parameter dependence of the neutral plane,internal film stress and strain of the cantilever system,and then the influence of such a parameter on the bending characteristic is presented. The results indicate,owing to the anisotropic expanding feature of the magnetostriction,that the neutral plane is generally anisotropic,and moves downwards rapidly with the increasing thickness ratio. Meanwhile,the bounding rigidity of substrate on the film will de-crease with the increasing thickness ratio,and thus release the film stress,i.e.,it decreases,but the film strain increases. The effect of Poisson’s ratio of the materi-als on the film strain,the stress and the neutral plane in the direction transverse to the magnetization is prominent. For the strain and the stress in the magnetization,however,the role of Poisson’s ratio is inconspicuous. This property is due to the initiative elongating (or contracting) feature of the magnetic film along its mag-netization.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61076120 and 61106130the Natural Science Foundation and Scientific Support Plan of Jiangsu Province under Grant Nos BK2012516,BK20131072,and BE2012007
文摘CaN films with an AlxGa1-xN/AlyGa1-xN superlattice (SL) buffer layer are grown on Si(111) substrates by metal-organic chemical vapor deposition (MOCVD). The structure and strain properties of the samples are studied by optical microscopy, Raman spectroscopy, x-ray diffractometry and atomic force microscopy. The results show that the strain status and crystalline quality of the CaN layers are strongly dependent on the difference of the Al composition between AlxCa1-xN barriers and AlyCa1-yN wells in the SLs. With a large Al composition difference, the CaN film tends to generate cracks on the surface due to the severe relaxation of the SLs. Otherwise, when using a small Al composition difference, the crystalline quality of the CaN layer degrades due to the poor function of the SLs in filtering dislocations. Under an optimized condition that the Al composition difference equals 0.1, the crack-free and compressive strained CaN film with an improved crystalline quality is achieved. Therefore, the AlxGa1-xN/AlyGal-yN SL buffer layer is a promising buffer structure for growing thick CaN films on Si substrates without crack generation.
基金the financial support from the National Nature Science Foundation of China (Grants Nos.11002123 and 10832009)Zhejiang Provincial Qianjiang Talent Fund(E9027)Key Innovation Fund(2009R50025)
文摘Many distinguished properties of epitaxial ferroelectric thin films can be tunable through the misfit strain.The strain tunability of ferroelectric and dielectric properties in epitaxial lead titanate ultrathin films is numerically investigated by using a phase field model,in which the surface effect of polarization is taken into account.The response of polarization to the applied electric field in the thickness direction is examined with different misfit strains at room temperature.It is found that a compressive misfit strain increases the coercive field and the remanent polarization while a tensile misfit strain decreases both of them.The nonlinear dielectric constants of the thin films with tensile misfit strains are much larger than those of the thin films without misfit strains,which are attributed to the existence of the a/c/a/c multiple domains in the thin films under tensile misfit strains.
基金supported by a grant (08-K1401-00610) from the Center of Nanoscale Mechatronics and Manufacturingone of the 21st Century Frontier Research Programs which are supported by the Ministry of Education,Science and Technology in Korea,Industry-University Partnership Laboratory Supporting Business"New Professor Support Program from Seoul National University of Technology"
文摘An easy calibration method was presented for in-situ measurement of displacement in the order of nanometer during micro-tensile test for thin films by using CCD camera as a sensing device. The calibration of the sensing camera in the system is a central element part to measure displacement in the order of nanometer using images taken with the camera. This was accomplished by modeling the optical projection through the camera lens and relative locations between the object and camera in 3D space. A set of known 3D points on a plane where the film is located on is projected to an image plane as input data. These points, known as a calibration points, are then used to estimate the projection parameters of the camera. In the measurement system of the micro-scale by CCD camera, the calibration data acquisition and one-to-one matching steps between the image and 3D planes need precise data extraction procedures and repetitive user's operation to calibrate the measuring devices. The lack of the robust image feature extraction and easy matching prevent the practical use of these methods. A data selection method was proposed to overcome these limitations and offer an easy and convenient calibration of a vision system that has the CCD camera and the 3D reference plane with calibration marks of circular type on the surface of the plane. The method minimizes the user's intervention such as the fine tuning of illumination system and provides an efficient calibration method of the vision system for in-situ axial displacement measurement of the micro-tensile materials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274321,11174302,11374312,and 11304326)the State Key Project of Fundamental Research of China(Grant Nos.2012CB933004 and 2009CB930803)+1 种基金the Ningbo Science and Technology Innovation Team(Grant Nos.2011B82004 and 2009B21005)the Ningbo Natural Science Foundations(Grant No.2013A610083)
文摘Flexible magnetic devices, i.e., magnetic devices fabricated on flexible substrates, are very attractive in applications such as detection of magnetic field in an arbitrary surface, non-contact actuators, and microwave devices, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Flexible magnetic films are essential for the realization of various functionalities of flexible magnetic devices. To give a comprehensive understanding for flexible magnetic films and related devices, recent advances in the study of flexible magnetic films are reviewed, including fabrication methods, magnetic and transport properties of flexible magnetic films, and their applications in magnetic sensors, actuators, and microwave devices. Our aim is to foster a comprehensive understanding of these films and devices. Three typical methods have been introduced to prepare the flexible magnetic films, by deposition of magnetic films on flexible substrates, by a transfer and bonding approach or by including and then removing sacrificial layers. Stretching or bending the magnetic films is a good way to apply mechanical strain to them, so that magnetic anisotropy, exchange bias, coercivity, and magnetoresistance can be effectively manipulated. Finally, a series of examples is shown to demonstrate the great potential of flexible magnetic films for future applications.
基金Project supported bythe Key Basic Research Project of MOST(2002CCC01300) the Natural Science Foundation of Beijing(2021003) the Science &Technology Development Project of Beijing Education Committee and Beijing Specific Projectto Foster Elitist (20041D0501513)
文摘A comparative study of the crystalline structure, magnetic properties, and transport properties of LSMO films grown on (100)-, (110)-, and (111) LaAlO3(LAO) substrates was carried out. Using atomic force microscopy, round, rectangle, and dot surface morphologies were observed in ( 100)-, ( 110)-, and ( 111 )-oriented LSMO films, respectively. Electrical and magnetic characterizations were performed on LSMO films of different orientation to provide evidence for the effect of strain on the magnetotransport properties. The ( 111 )-oriented LSMO film has higher saturation magnetization and lower resistance compared with the (100)- and (110)-oriented LSMO films, which results from the smaller elastic deformation due to the larger elastic modulus along the 〈 111 〉 crystallographic direction.
文摘SrTiO3 (STO) thin films of different thicknesses were deposited on MgAl2O4 (MAO) substrates to investigate the in-plane strain effect on the soft-mode frequency of the STO films. X-ray reciprocal space mapping (X-RSM) results indicate that there was no relaxation of the in-plane lattice strain of the STO films on MAO. Shifts in the soft-mode frequencies with a decrease in the film thickness were observed using terahertz time-domain spectroscopy (THz-TDS). However, despite the larger lattice mismatch between STO and MAO than that between STO and DyScO3 (DSO), the shifts in the soft-mode frequencies of the STO films on MAO were smaller than those on DSO. The results indicate that the soft-mode frequencies of the STO films on MAO are affected by the c-axis (out-of-plane) lengths.
基金supported by NSF(DMI-0328162 and ECCS-0824129)the National Natural Science Foundation of China (10820101048)Ministry of Education of China,and the National Basic Research Program of China(2007CB936803).
文摘Stretchable electronics represents a direction of recent development in next-generation semiconductor devices.Such systems have the potential to offer the performance of conventional wafer-based technologies,but they can be stretched like a rubber band,twisted like a rope, bent over a pencil,and folded like a piece of paper.Isolating the active devices from strains associated with such deformations is an important aspect of design.One strategy involves the shielding of the electronics from deformation of the substrate through insertion of a compliant adhesive layer. This paper establishes a simple,analytical model and validates the results by the finite element method.The results show that a relatively thick,compliant adhesive is effective to reduce the strain in the electronics,as is a relatively short film.
文摘Nanocrystalline copper films were prepared by sputtering and then in situ straining experiments were performed using a trans- mission electron microscope. Macroscopically, these copper films exhibited very low ductility (<l%). Dislocation activity was limited in regions far from propagating cracks. Near stable growing cracks, considerable local plasticity was observed. The evidence of slip ac- tivity both within grain interiors and in grain boundaries was also observed. Although some dislocation; moved very fast, others showed rates much lower than those typically measured for bulk copper. Fracture was intergranular, but not brittle. It occurred by linking of microcracks. Microcracks formed within a micrometer or so ahead of the main crack tip, usually within a grain boundary. Linking then took place by the easiest available path.
基金Funded by the National Natural Science Foundation of China(No.51502179)the Colleges and Universities in Hebei Province Science and Technology Research Project(No.YQ2014033)the Hebei Key Discipline Construction Project(B2012210004 and E2013210038)
文摘We present the specific ab-initio calculations that detail the variations of perovskite BaZrO3 caused by in-plane strain. Specifically, the internal relaxation, which was not captured in the widely used biaxial strain model, was included in a complementary manner to lattice relaxation. Density functional theory as well as a hybrid functional method based on a plane wave basis set was employed to calculate the lattice structure, elastic constants, electronic properties and optical properties of perovskite BaZrO3. The lattice parameter c exhibited a clear linear dependence on the imposed in-plane strain, but the Poisson's ratio caused by internal relaxation was smaller than the elastic deformation, indicating an "inelastic" or "plastic" relaxation manner caused by the introduction of internal relaxation. As a result, the related electronic and optical properties of perovskite BaZrO3 were also strongly affected by the in-plane strain, which revealed an effective way to adjust the properties of perovskite BaZrO3 via internal relaxation.
基金granted by Frontier Materials and Micro/Nano Science and Technology Center,National Cheng Kung University,Taiwan,R.O.C
文摘The nanoindentations were applied to island-shaped regions with metal-induced Si crystallizations. The experimental stress-strain relationship is obtained from the load-depth profile in order to investigate the critical stresses arising at various phase transitions. The stress and strain values at various indentation depths are applied to determine the Gibbs free energy at various phases. The intersections of the Gibbs free energy lines are used to determine the possible paths of phase transitions arising at various indentation depths. All the critical contact stresses corresponding to the various phase transitions at four annealing temperatures were found to be consistent with the experimental results.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB632103)the National Natural Science Foundation of China(Grant Nos.61036003,61176013,and 61177038)
文摘Tensile strain, crystal quality, and surface morphology of 500 nm thick Ge films were improved after rapid thermal annealing at 900 ℃ for a short period (〈 20 s). The films were grown on Si(001) substrates by ultra-high vacuum chemical vapor deposition. These improvements are attributed to relaxation and defect annihilation in the Ge films. However, after prolonged (〉 20 s) rapid thermal annealing, tensile strain and crystal quality degenerated. This phenomenon results from intensive Si-Ge mixing at high temperature.