Filtration efficiency of Ni(II) from aqueous solution using pristine and modified MWCNTs filters was investigated as a function of Ni(II) ion concentration, p H, and filter mass. MWCNTs were synthesized by CVD method ...Filtration efficiency of Ni(II) from aqueous solution using pristine and modified MWCNTs filters was investigated as a function of Ni(II) ion concentration, p H, and filter mass. MWCNTs were synthesized by CVD method and modified using two complementary treatments, purification(using a mixture of hydrochloric acid and hydrogen peroxide) and functionalization(using nitric acid). The effect and mechanism of each treatment on the structural integrity of pristine MWCNTs has been studied. Morphology of the pristine and modified filters was investigated by Raman Spectrometry(RS), Scanning Electron Microscopy(SEM), Energy Dispersive X-ray Spectroscopy(EDS),Fourier Transform Infrared(FTIR) spectrometry and Thermogravimetric analysis. It was found from Raman spectra that the ratio of the intensity of D-band to that of G-band decreased by purification process, and increased by functionalization process. The adsorption mechanism of Ni(II) onto the surface functional groups of modified MWCNTs was confirmed by FTIR spectrum. The filtration results showed that the removal efficiency of Ni(II) is strongly dependent on pH and could reach 85% at pH = 8. Also, modified MWCNT filters can be reused through many cycles of regeneration with high performance. Functionalized MWCNTs filters may be a promising adsorbent candidate for heavy metal removal from wastewater.展开更多
Excellent drilling fluid techniques are one of the significant guaranteed measures to insure safety, qual- ity, efficiency, and speediness of drilling operations. Dril- ling fluids are generally discarded after the co...Excellent drilling fluid techniques are one of the significant guaranteed measures to insure safety, qual- ity, efficiency, and speediness of drilling operations. Dril- ling fluids are generally discarded after the completion of drilling operations and become waste, which can have a large negative impact on the environment. Drilling mate- rials and additives together with drill cuttings, oil, and water constitute waste drilling fluids, which ultimately are dumped onto soil, surface water, groundwater, and air. Environmental pollution is found to be a serious threat while drilling complex wells or high-temperature deep wells as these types of wells involve the use of oil-based drilling fluid systems and high-performance water-based drilling fluid systems. The preservation of the environment on a global level is now important as various organizations have set up initiatives to drive the usage of toxic chemicals as drilling fluid additives. This paper presents an approach where grass is introduced as a sustainable drilling fluid additive with no environmental problems. Simple water- based drilling fluids were formulated using bentonite, powdered grass, and water to analyze the rheological and filtration characteristics of the new drilling fluid. A particle size distribution test was conducted to determine the par- ticle size of the grass sample by the sieve analysis method. Experiments were conducted on grass samples of 300, 90, and 35 μm to study the characteristics and behavior of the newly developed drilling fluid at room temperature. The results show that grass samples with varying particle sizes and concentrations may improve the viscosity, gel strength, and filtration of the bentonite drilling fluid. These obser- vations recommend the use of grass as a rheological modifier, filtration control agent, and pH control agent to substitute toxic materials from drilling fluids.展开更多
The contribution of leakage in a baghouse filter (defined as a short circuit between the upstream and downstream sides of the filter) to the emission of fine particles is quantified in comparison to other dust emiss...The contribution of leakage in a baghouse filter (defined as a short circuit between the upstream and downstream sides of the filter) to the emission of fine particles is quantified in comparison to other dust emission sources, and the influence of key operating variables on overall system response is analyzed. The study was conducted on a well-maintained pilot-scale filter unit (9 bags of 500 g/m^2 calendered polyester needle felt; total surface area 4.2 m^2) operated in Ap-controlled mode over a range of pulsing intensities, with two types of test dust (one free-flowing and the other cohesive) at inlet concentrations of 10 and 30 g/m^3. Leaks included single holes between 0.5 and 4 mm diameter, intentionally placed in either the plenum plate or one of the filter bags, as well as seamlines from bag confectioning. Emissions were sep- arated by source into a transient contribution due to dust penetration through the filter bags after each cleaning pulse, and a continuous contribution from leaks. This separation was based on a novel method of data processing that relies on time-resolved concentration measurements with a specially calibrated optical particle counter. Tiny leaks on the order of 1 mm generated the same emission level as all the bags combined, and dominated continuous emissions. The equivalent leak cross section (leakage = media emission) was about 1 ppm of the total installed filter surface, independent of upstream dust concentra- tion. Leakage through open seamlines amounted to 75% of media emissions in case of free-flowing test dust. Leakage was restricted to aerodynamic diameters less than ~5 μm (roughly the PM2.s mass frac- tion). For comparison, time-averaged mass penetration through conventional needle-felt media ranged from about 10^-5 to 10^-6, depending on cohesiveness of the particle material and pulse cleaning intensity, giving emission levels between about 0.02 and 0.2 mg/m^3 at the reference concentration of 10 R/m^2.展开更多
Solid–liquid separation is widely used in daily life and practical engineering.Traditional industrial filters are prone to clogging,but this rarely occurs in filter-feeding organisms.Inspired by the filter feeding me...Solid–liquid separation is widely used in daily life and practical engineering.Traditional industrial filters are prone to clogging,but this rarely occurs in filter-feeding organisms.Inspired by the filter feeding mechanism of balaenid whales and considering the local grooves in the fringes layer,a new bionic filter is produced by 3D printing technology through the bionic design of the parallel channels inside the mouth of balaenid whales.At the same time,a test platform composed of the bionic filter,peristaltic pump,fluid pulse rectifier and water tank is built to carry out the fluid flow pattern dyeing and particle filtration experiments.It is found that fluid separation occurs near the groove structure and local vortices are generated.The vortex control filtration mechanism makes the particles in the front grooves tend to accumulate on the left side,which has a certain anti-clogging effect.Moreover,the increase of flow velocity leads to the enhancement of vortices,which makes the accumulation effect on the left more obvious.This study initially practices the bionic application from biological model to engineering design,and the vortex control anti-clogging filtration mechanism proposed in the study has a wide range of application prospects and values.展开更多
基金Supported by the Program of MSU Development and Russian Foundation for Basic Research(RFBR)(No.14-02-01230a and No.14-02-31147 mol_a)
文摘Filtration efficiency of Ni(II) from aqueous solution using pristine and modified MWCNTs filters was investigated as a function of Ni(II) ion concentration, p H, and filter mass. MWCNTs were synthesized by CVD method and modified using two complementary treatments, purification(using a mixture of hydrochloric acid and hydrogen peroxide) and functionalization(using nitric acid). The effect and mechanism of each treatment on the structural integrity of pristine MWCNTs has been studied. Morphology of the pristine and modified filters was investigated by Raman Spectrometry(RS), Scanning Electron Microscopy(SEM), Energy Dispersive X-ray Spectroscopy(EDS),Fourier Transform Infrared(FTIR) spectrometry and Thermogravimetric analysis. It was found from Raman spectra that the ratio of the intensity of D-band to that of G-band decreased by purification process, and increased by functionalization process. The adsorption mechanism of Ni(II) onto the surface functional groups of modified MWCNTs was confirmed by FTIR spectrum. The filtration results showed that the removal efficiency of Ni(II) is strongly dependent on pH and could reach 85% at pH = 8. Also, modified MWCNT filters can be reused through many cycles of regeneration with high performance. Functionalized MWCNTs filters may be a promising adsorbent candidate for heavy metal removal from wastewater.
基金the support provided by the Deanship of Scientific Research(DSR)at King Fahd University of Petroleum&Minerals(KFUPM)for funding this work through Project No.IN 141008
文摘Excellent drilling fluid techniques are one of the significant guaranteed measures to insure safety, qual- ity, efficiency, and speediness of drilling operations. Dril- ling fluids are generally discarded after the completion of drilling operations and become waste, which can have a large negative impact on the environment. Drilling mate- rials and additives together with drill cuttings, oil, and water constitute waste drilling fluids, which ultimately are dumped onto soil, surface water, groundwater, and air. Environmental pollution is found to be a serious threat while drilling complex wells or high-temperature deep wells as these types of wells involve the use of oil-based drilling fluid systems and high-performance water-based drilling fluid systems. The preservation of the environment on a global level is now important as various organizations have set up initiatives to drive the usage of toxic chemicals as drilling fluid additives. This paper presents an approach where grass is introduced as a sustainable drilling fluid additive with no environmental problems. Simple water- based drilling fluids were formulated using bentonite, powdered grass, and water to analyze the rheological and filtration characteristics of the new drilling fluid. A particle size distribution test was conducted to determine the par- ticle size of the grass sample by the sieve analysis method. Experiments were conducted on grass samples of 300, 90, and 35 μm to study the characteristics and behavior of the newly developed drilling fluid at room temperature. The results show that grass samples with varying particle sizes and concentrations may improve the viscosity, gel strength, and filtration of the bentonite drilling fluid. These obser- vations recommend the use of grass as a rheological modifier, filtration control agent, and pH control agent to substitute toxic materials from drilling fluids.
文摘The contribution of leakage in a baghouse filter (defined as a short circuit between the upstream and downstream sides of the filter) to the emission of fine particles is quantified in comparison to other dust emission sources, and the influence of key operating variables on overall system response is analyzed. The study was conducted on a well-maintained pilot-scale filter unit (9 bags of 500 g/m^2 calendered polyester needle felt; total surface area 4.2 m^2) operated in Ap-controlled mode over a range of pulsing intensities, with two types of test dust (one free-flowing and the other cohesive) at inlet concentrations of 10 and 30 g/m^3. Leaks included single holes between 0.5 and 4 mm diameter, intentionally placed in either the plenum plate or one of the filter bags, as well as seamlines from bag confectioning. Emissions were sep- arated by source into a transient contribution due to dust penetration through the filter bags after each cleaning pulse, and a continuous contribution from leaks. This separation was based on a novel method of data processing that relies on time-resolved concentration measurements with a specially calibrated optical particle counter. Tiny leaks on the order of 1 mm generated the same emission level as all the bags combined, and dominated continuous emissions. The equivalent leak cross section (leakage = media emission) was about 1 ppm of the total installed filter surface, independent of upstream dust concentra- tion. Leakage through open seamlines amounted to 75% of media emissions in case of free-flowing test dust. Leakage was restricted to aerodynamic diameters less than ~5 μm (roughly the PM2.s mass frac- tion). For comparison, time-averaged mass penetration through conventional needle-felt media ranged from about 10^-5 to 10^-6, depending on cohesiveness of the particle material and pulse cleaning intensity, giving emission levels between about 0.02 and 0.2 mg/m^3 at the reference concentration of 10 R/m^2.
基金supports from the National Natural Science Foundation of China(51775169)the High Level Talent Foundation of Henan University of Technology(31401456)the Innovative Funds Plan of Henan University of Technology(2020ZKCJ26)are gratefully acknowledged.
文摘Solid–liquid separation is widely used in daily life and practical engineering.Traditional industrial filters are prone to clogging,but this rarely occurs in filter-feeding organisms.Inspired by the filter feeding mechanism of balaenid whales and considering the local grooves in the fringes layer,a new bionic filter is produced by 3D printing technology through the bionic design of the parallel channels inside the mouth of balaenid whales.At the same time,a test platform composed of the bionic filter,peristaltic pump,fluid pulse rectifier and water tank is built to carry out the fluid flow pattern dyeing and particle filtration experiments.It is found that fluid separation occurs near the groove structure and local vortices are generated.The vortex control filtration mechanism makes the particles in the front grooves tend to accumulate on the left side,which has a certain anti-clogging effect.Moreover,the increase of flow velocity leads to the enhancement of vortices,which makes the accumulation effect on the left more obvious.This study initially practices the bionic application from biological model to engineering design,and the vortex control anti-clogging filtration mechanism proposed in the study has a wide range of application prospects and values.