Backward erosion piping is an important failure mechanism for cohesive water retaining structures which are founded on a sandy aquifer. At present, the prediction models for safety assessment are often based on 2D ass...Backward erosion piping is an important failure mechanism for cohesive water retaining structures which are founded on a sandy aquifer. At present, the prediction models for safety assessment are often based on 2D assumptions. In this work, a 3D numerical approach of the groundwater flow leading to the erosion mechanism of backward erosion piping is presented and discussed. Comparison of the 2D and 3D numerical results explicitly demonstrates the inherent 3D nature of the piping phenomenon. In addition, the influence of the seepage length is investigated and discussed for both piping initiation and piping progression. The results clearly indicate the superiority of the presented 3D numerical model compared to the established 2D approach. Moreover, the 3D numerical results enable a better understanding of the complex physical mechanism involved in backward erosion piping and thus can lead to a significant improvement in the safety assessment of water retaining structures.展开更多
Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation a...Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger.展开更多
Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,compara...Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,comparatively fewer works have been devoted to study the effect of adsorption boundary layer(ABL)in throats based on the digital rock method.By considering an ABL,we investigate its effects on fluid flow.We build digital rock model based on computed tomography technology.Then,microscopic pore structures are extracted with watershed segmentation and pore geometries are meshed through Delaunay triangulation approach.Finally,using the meshed digital simulation model and finite element method,we investigate the effects of viscosity and thickness of ABL on microscale flow.Our results demonstrate that viscosity and thickness of ABL are major factors that significantly hinder fluid flow in throats.展开更多
The finite element method (FEM) and particle image velocimetry (PIV) technique are utilized to get the flow field along the inlet passage, the chamber, the metering port and the outlet passage of spool valve at th...The finite element method (FEM) and particle image velocimetry (PIV) technique are utilized to get the flow field along the inlet passage, the chamber, the metering port and the outlet passage of spool valve at three different valve openings. For FEM numerical simulation, the stream function ψ-vorticity ω forms of continuity and Navier-Stokes equations are employed and FEM is applied to discrete the equations. Homemade simulation codes are executed to compute the values of stream function and vorticity at each node in the flow domain, then according to the correlation between stream function and velocity components, the velocity vectors of the whole field are calculated. For PIV experiment, pulse Nd: YAG laser is exploited to generate laser beam, cylindrical and spherical lenses are combined each other to produce 1.0 mm thickness laser sheet to illuminate the object plane, Polystyrene spherical particle with diameter of 30-50 μm is seeded in the fluid as a tracing particles, Kodak ES 1.0 CCD camera is employed to capture the images of interested, the images are processed with fast Fourier transform (FFT) cross-correlation algorithm and the processing results is displayed. Both results of numerical simulation and PIV experimental show that there are three main areas in the spool valve where vortex is formed. Numerical results also indicate that the valve opening have some effects on the flow structure of the valve. The investigation is helpful for qualitatively analyzing the energy loss, noise generating, steady state flow forces and even designing the geometry structure and flow passage.展开更多
Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid ...Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid injection, which creates an interconnected fracture network and increases the hydrocarbonproduction. Meanwhile, microseismic (MS) monitoring is one of the most effective approaches to evaluatesuch stimulation process. In this paper, the combined finite-discrete element method (FDEM) isadopted to numerically simulate HF and associated MS. Several post-processing tools, includingfrequency-magnitude distribution (b-value), fractal dimension (D-value), and seismic events clustering,are utilized to interpret numerical results. A non-parametric clustering algorithm designed specificallyfor FDEM is used to reduce the mesh dependency and extract more realistic seismic information.Simulation results indicated that at the local scale, the HF process tends to propagate following the rockmass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to themaximum in-situ stress. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
Simulation of the temperature field of copier paper in copier fusing is very important for improving the fusing property of reprography. The temperature field of copier paper varies with a high gradient when the copie...Simulation of the temperature field of copier paper in copier fusing is very important for improving the fusing property of reprography. The temperature field of copier paper varies with a high gradient when the copier paper is moving through the fusing rollers. By means of conventional shaft elements, the high gradient temperature variety causes the oscillation of the numerical solution. Based on the Daubechies scaling functions, a kind of wavelet based element is constructed for the above problem. The temperature field of the copier paper moving through the fusing rollers is simulated using the two methods. Comparison of the results shows the advantages of the wavelet finite element method, which provides a new method for improving the copier properties.展开更多
This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and...This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and temperature loads. In the calculation mesh, the contact surface of pair nodes is located at places on the arch dam where cracking is possible. A new effective iterative method, the mixed finite element method for friction-contact problems, is improved and used for nonlinear simulation of the cracking process. The forces acting on the structure are divided into two parts: external forces and contact forces. The displacement of the structure is chosen as the basic variable and the nodal contact force in the possible contact region of the local coordinate system is chosen as the iterative variable, so that the nonlinear iterative process is only limited within the possible contact surface and is much more economical. This method was used to simulate the cracking process of the Shuanghe Arch Dam in Southwest China. In order to prove the validity and accuracy of this method and to study the effect of thermal stress on arch dam cracking, three schemes were designed for calculation. Numerical results agree with actual measured data, proving that it is feasible to use this method to simulate the entire process of nonlinear arch dam cracking.展开更多
A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement usin...A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement using norm stress error estimator. A rosette of quarter-point elements is then constructed around the crack tip to facilitate the prediction of crack growth based on the maximum normal stress criterion and to calculate stress intensity factors under plane stress and plane strain conditions. Crack was modelled to propagate through the inter-element in the mesh. Some examples are presented to show the results of the implementation.展开更多
A vein model was established to simulate the periodic characteristics of blood flow and valve deformation in blood-induced valve cycles.Using an immersed finite element method which was modified by a ghost fluid techn...A vein model was established to simulate the periodic characteristics of blood flow and valve deformation in blood-induced valve cycles.Using an immersed finite element method which was modified by a ghost fluid technique,the interaction between the vein and blood was simulated.With an independent solid solver,the contact force between vein tissues was calculated using an adhesive contact method.A benchmark simulation of the normal valve cycle validated the proposed model for a healthy vein.Both the opening orifice and blood flow rate agreed with those in the physiology.Low blood shear stress and maximum leaflet stress were also seen in the base region of the valve.On the basis of the healthy model,a diseased vein model was subsequently built to explore the sinus lesions,namely,fibrosis and atrophy which are assumed stiffening and softening of the sinus.Our results showed the opening orifice of the diseased vein was inversely proportional to the corresponding modulus of the sinus.A drop in the transvalvular pressure gradient resulted from the sinus lesion.Compared to the fibrosis,the atrophy of the sinus apparently improved the vein deformability but simultaneously accelerated the deterioration of venous disease and increased the risk of potential fracture.These results provide understandings of the normal/abnormal valve cycle in vein,and can be also helpful for the prosthesis design.展开更多
Different material properties leads to different metal fracture behaviors. Even if the powder material is composed of plastic metal, the fracture still does not show macroscopic plastic deformation characteristics if ...Different material properties leads to different metal fracture behaviors. Even if the powder material is composed of plastic metal, the fracture still does not show macroscopic plastic deformation characteristics if the material contains a large number of voids. Eight node isoparametric elastic plastic finite element method was used to simulate the tensile process of sintered powder material. By setting a number of voids in the analyzed metal cuboid, the initial density was taken into consideration. The material properties of the three dimensional solid for the tensile simulation were defined with reference to the known pure iron material parameters. The load displacement curves during elongation were obtained with a universal testing machine, and then the simulated curves were compared with the experimental results. The factors that cause the stress concentration and strength decrease were analyzed according to the simulated equivalent von Mises stress distribution.展开更多
Finite element method(FEM) was used to simulate the forming process of shotpeening the wing skin panel. Experiment of shotpeeing the wing skin panel was carried out. The results show that equivalent deformation in sho...Finite element method(FEM) was used to simulate the forming process of shotpeening the wing skin panel. Experiment of shotpeeing the wing skin panel was carried out. The results show that equivalent deformation in shotpeening process can be obtained using the elongation and bending result caused by thermal stress that is induced by applying temperature load on the surface of the part. Deformation of the part in the shotpeeing process can be analyzed using this method. The parameters and their relationships are identified.展开更多
Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul...Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis.展开更多
Cross-wedge rolling (CWR) is a metal process of ro ta ry forming. To produce a part, one cylindrical billet should be placed between t wo counterrotating and wedge-shape dies, which move tangentially relative each oth...Cross-wedge rolling (CWR) is a metal process of ro ta ry forming. To produce a part, one cylindrical billet should be placed between t wo counterrotating and wedge-shape dies, which move tangentially relative each other. The billet suffers plastic deformation (essentially, localized compressio n) during its rotation between the rotating dies. Compared to other numerical si mulation methods, the finite element method (FEM) has advantages in solving gene ral problems with complex shapes of the formed parts. In cross-wedge rolling, t here are four stages in the workpiece deformation process, namely knifing, guidi ng, stretching and sizing stage. It is time-consuming and expensive to design t he CWR process by trial and error method. The application of numerical simul ation for the CWR process will help engineers to efficiently improve the process development. Tselikov, Hayama, Jain and Kobayashi, and Higashimo applied the sl ip-line theory in study of CWR process analysis. Zb.pater studied CWR process i ncluding upsetting by upper-bound method. The above numerical simulation were b ased on the two-dimensional plain-strain assumption ignored the metal flow in workpiece axial direction. Therefore, the complex three-dimensional stress and deformation involved in CWR processes were not presented. Compared to other nume rical simulation methods, the finite element method (FEM) has advantages in solv ing general problems with complex shapes of the formed parts. As yet, a few 3-D finite element simulation studies on CWR process have been reported in literatu res. In this paper, the process of cross wedge rolling (CWR) has been simulated and analyzed by 3D rigid-plastic finite element method. Considering the charact eristic of CWR, the static implicit FEM program is selected. The models proposed in this study uses the commercial code DEFORM 3D to simulate the CWR process. T his is an implicit Lagrangian finite element code, which includes many new enhan cements functions. A new method of utilizing multiple processors using the MPI s tandard has been implemented. Automatic switching between the two different defo rmation solvers (Sparse Solver and Conjugate Gradient Solver) has also been impl emented in order to increase the speed of simulations. In this paper, all stages in CWR process are simulated to be able to closely understand and analyze the a ctual CWR process. For simulating all forming stages in CWR process, the dynam ic adaptive remeshing technology for tetrahedral solid elements was applied. T he stress distributions in cross section of forming workpiece are analyzed to in terpret fracture or rarefaction in the center of workpiece. Authors also analyze d the time-torque curve and the laws of load changing.展开更多
The compaction and stress generation on terrain were always investigated based on empirical approaches or testing methods for tire/soil interaction.However,the analysis should be performed for various tires and at dif...The compaction and stress generation on terrain were always investigated based on empirical approaches or testing methods for tire/soil interaction.However,the analysis should be performed for various tires and at different soil strengths.With the increasing capacity of numerical computers and simulation software,finite element modeling of tire/terrain interaction seems a good approach for predicting the effect of change on the parameters.In this work,an elaborated 3D model fully complianning with the geometry of radial tire 115/60R13 was established,using commercial code Solidwork Simulation.The hyper-elastic and incompressible rubber as tire main material was analyzed by Moony-Rivlin model.The Drucker-Prager yield criterion was used to model the soil compaction.Results show that the model realistically predicts the laboratory tests outputs of the modeled tire on the soft soil.展开更多
Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excav...Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability.展开更多
An integrated approach was proposed to evaluate the remaining useful life(RUL)of corroded petroleum pipelines.Two types of failure modes(i.e.,leakage and burst failure)were considered,and the corresponding limit state...An integrated approach was proposed to evaluate the remaining useful life(RUL)of corroded petroleum pipelines.Two types of failure modes(i.e.,leakage and burst failure)were considered,and the corresponding limit state functions(LSFs)were established with the structural reliability theory.A power-law function was applied to model the growth of corrosion defects,and the effect of external environmental factors on the growth of the pipeline s defect was considered.Moreover,the result was compared with the commonly used linear growth model.After that,a finite element simulation model was established to calculate the burst pressure of the pipeline with corrosion defects,and its accuracy was verified through hydraulic burst test and by comparison with international criteria.On that basis,the probability that the pipeline may fail was calculated with Monte Carlo simulation(MCS)and by considering the LSFs,and the pipeline s RUL was obtained accordingly.Furthermore,sensitivity analysis was conducted to determine the sensitivity parameters for the corrosion and RUL of the pipeline.The results indicate that the radial corrosion rate,wall thickness and working pressure have a great influence on the failure probability of the pipeline.Thus,corresponding measures should be adopted during the operation process of the pipeline to reduce the corrosion rate and increase the wall thickness,so as to prolong the pipeline s RUL.展开更多
The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/stra...The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method.展开更多
The energy produced by the melting stretching disks surface has a wide range of commercial applications,including semi-conductor material preparation,magma solidification,permafrost melting,and frozen land refreezing,...The energy produced by the melting stretching disks surface has a wide range of commercial applications,including semi-conductor material preparation,magma solidification,permafrost melting,and frozen land refreezing,among others.In view of this,in the current communication we analyzed magnetohydrodynamic flow ofMaxwell nanofluid between two parallel rotating disks.Nanofluids are important due to their astonishing properties in heat conduction flows and in the enhancement of electronic and manufacturing devices.Furthermore,the distinct tinysized particles Al_(2)O_(3)and TiO_(2)in theMaxwell water-based fluid for enhancing the heat transfer rate are analyzed.The heat equation is developed in the occurrence of thermal radiation.The influences of melting impacts are incorporated.The mathematical model is developed in the form of partial differential expressions then converted to ordinary differential equations by employing tool of similarity variables.Finite element method(FEM)is chosen for solving the nonlinear governing ordinary differential equations(ODEs)with necessary conditions.The consequence of flow parameters against the velocity profiles and heat transport field is considered.The noted novelty of this communication is to discuss the thermal transfer of Maxwell nanofluid model through double stretching disks with thermal radiation and melting phenomenon.Further,Al_(2)O_(3)/water and TiO_(2)/water are considered in the modeling.展开更多
文摘Backward erosion piping is an important failure mechanism for cohesive water retaining structures which are founded on a sandy aquifer. At present, the prediction models for safety assessment are often based on 2D assumptions. In this work, a 3D numerical approach of the groundwater flow leading to the erosion mechanism of backward erosion piping is presented and discussed. Comparison of the 2D and 3D numerical results explicitly demonstrates the inherent 3D nature of the piping phenomenon. In addition, the influence of the seepage length is investigated and discussed for both piping initiation and piping progression. The results clearly indicate the superiority of the presented 3D numerical model compared to the established 2D approach. Moreover, the 3D numerical results enable a better understanding of the complex physical mechanism involved in backward erosion piping and thus can lead to a significant improvement in the safety assessment of water retaining structures.
基金supported by National Natural Science Foundation of China(No. 50175034).
文摘Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger.
基金National Natural Science Foundation of China(No.51674280,51774308,51704033,51722406,51950410591)Shandong Provincial Natural Science Foundation(ZR2019JQ21,JQ201808)+3 种基金the Fundamental Research Funds for the Central Universities(No.20CX02113A)National Science and Technology Major Project(2016ZX05014-000407)Program for Changjiang Scholars and Innovative Research Team in University(IRT_16R69)PetroChina Innovation Foundation(No.2018D-5007-0210)。
文摘Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,comparatively fewer works have been devoted to study the effect of adsorption boundary layer(ABL)in throats based on the digital rock method.By considering an ABL,we investigate its effects on fluid flow.We build digital rock model based on computed tomography technology.Then,microscopic pore structures are extracted with watershed segmentation and pore geometries are meshed through Delaunay triangulation approach.Finally,using the meshed digital simulation model and finite element method,we investigate the effects of viscosity and thickness of ABL on microscale flow.Our results demonstrate that viscosity and thickness of ABL are major factors that significantly hinder fluid flow in throats.
文摘The finite element method (FEM) and particle image velocimetry (PIV) technique are utilized to get the flow field along the inlet passage, the chamber, the metering port and the outlet passage of spool valve at three different valve openings. For FEM numerical simulation, the stream function ψ-vorticity ω forms of continuity and Navier-Stokes equations are employed and FEM is applied to discrete the equations. Homemade simulation codes are executed to compute the values of stream function and vorticity at each node in the flow domain, then according to the correlation between stream function and velocity components, the velocity vectors of the whole field are calculated. For PIV experiment, pulse Nd: YAG laser is exploited to generate laser beam, cylindrical and spherical lenses are combined each other to produce 1.0 mm thickness laser sheet to illuminate the object plane, Polystyrene spherical particle with diameter of 30-50 μm is seeded in the fluid as a tracing particles, Kodak ES 1.0 CCD camera is employed to capture the images of interested, the images are processed with fast Fourier transform (FFT) cross-correlation algorithm and the processing results is displayed. Both results of numerical simulation and PIV experimental show that there are three main areas in the spool valve where vortex is formed. Numerical results also indicate that the valve opening have some effects on the flow structure of the valve. The investigation is helpful for qualitatively analyzing the energy loss, noise generating, steady state flow forces and even designing the geometry structure and flow passage.
基金supported by the Natural Sciences and Engineering Research Council of Canada through Discovery Grant 341275 (G. Grasselli) and Engage EGP 461019-13
文摘Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid injection, which creates an interconnected fracture network and increases the hydrocarbonproduction. Meanwhile, microseismic (MS) monitoring is one of the most effective approaches to evaluatesuch stimulation process. In this paper, the combined finite-discrete element method (FDEM) isadopted to numerically simulate HF and associated MS. Several post-processing tools, includingfrequency-magnitude distribution (b-value), fractal dimension (D-value), and seismic events clustering,are utilized to interpret numerical results. A non-parametric clustering algorithm designed specificallyfor FDEM is used to reduce the mesh dependency and extract more realistic seismic information.Simulation results indicated that at the local scale, the HF process tends to propagate following the rockmass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to themaximum in-situ stress. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘Simulation of the temperature field of copier paper in copier fusing is very important for improving the fusing property of reprography. The temperature field of copier paper varies with a high gradient when the copier paper is moving through the fusing rollers. By means of conventional shaft elements, the high gradient temperature variety causes the oscillation of the numerical solution. Based on the Daubechies scaling functions, a kind of wavelet based element is constructed for the above problem. The temperature field of the copier paper moving through the fusing rollers is simulated using the two methods. Comparison of the results shows the advantages of the wavelet finite element method, which provides a new method for improving the copier properties.
基金supported by the National Nature Science Foundation of China (Grant No 90510017)
文摘This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and temperature loads. In the calculation mesh, the contact surface of pair nodes is located at places on the arch dam where cracking is possible. A new effective iterative method, the mixed finite element method for friction-contact problems, is improved and used for nonlinear simulation of the cracking process. The forces acting on the structure are divided into two parts: external forces and contact forces. The displacement of the structure is chosen as the basic variable and the nodal contact force in the possible contact region of the local coordinate system is chosen as the iterative variable, so that the nonlinear iterative process is only limited within the possible contact surface and is much more economical. This method was used to simulate the cracking process of the Shuanghe Arch Dam in Southwest China. In order to prove the validity and accuracy of this method and to study the effect of thermal stress on arch dam cracking, three schemes were designed for calculation. Numerical results agree with actual measured data, proving that it is feasible to use this method to simulate the entire process of nonlinear arch dam cracking.
文摘A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement using norm stress error estimator. A rosette of quarter-point elements is then constructed around the crack tip to facilitate the prediction of crack growth based on the maximum normal stress criterion and to calculate stress intensity factors under plane stress and plane strain conditions. Crack was modelled to propagate through the inter-element in the mesh. Some examples are presented to show the results of the implementation.
基金by Key Aviation Scientific and Technological Laboratory of High-speed Hydrodynamic under grant MJ-2015-F-028.
文摘A vein model was established to simulate the periodic characteristics of blood flow and valve deformation in blood-induced valve cycles.Using an immersed finite element method which was modified by a ghost fluid technique,the interaction between the vein and blood was simulated.With an independent solid solver,the contact force between vein tissues was calculated using an adhesive contact method.A benchmark simulation of the normal valve cycle validated the proposed model for a healthy vein.Both the opening orifice and blood flow rate agreed with those in the physiology.Low blood shear stress and maximum leaflet stress were also seen in the base region of the valve.On the basis of the healthy model,a diseased vein model was subsequently built to explore the sinus lesions,namely,fibrosis and atrophy which are assumed stiffening and softening of the sinus.Our results showed the opening orifice of the diseased vein was inversely proportional to the corresponding modulus of the sinus.A drop in the transvalvular pressure gradient resulted from the sinus lesion.Compared to the fibrosis,the atrophy of the sinus apparently improved the vein deformability but simultaneously accelerated the deterioration of venous disease and increased the risk of potential fracture.These results provide understandings of the normal/abnormal valve cycle in vein,and can be also helpful for the prosthesis design.
文摘Different material properties leads to different metal fracture behaviors. Even if the powder material is composed of plastic metal, the fracture still does not show macroscopic plastic deformation characteristics if the material contains a large number of voids. Eight node isoparametric elastic plastic finite element method was used to simulate the tensile process of sintered powder material. By setting a number of voids in the analyzed metal cuboid, the initial density was taken into consideration. The material properties of the three dimensional solid for the tensile simulation were defined with reference to the known pure iron material parameters. The load displacement curves during elongation were obtained with a universal testing machine, and then the simulated curves were compared with the experimental results. The factors that cause the stress concentration and strength decrease were analyzed according to the simulated equivalent von Mises stress distribution.
文摘Finite element method(FEM) was used to simulate the forming process of shotpeening the wing skin panel. Experiment of shotpeeing the wing skin panel was carried out. The results show that equivalent deformation in shotpeening process can be obtained using the elongation and bending result caused by thermal stress that is induced by applying temperature load on the surface of the part. Deformation of the part in the shotpeeing process can be analyzed using this method. The parameters and their relationships are identified.
文摘Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis.
文摘Cross-wedge rolling (CWR) is a metal process of ro ta ry forming. To produce a part, one cylindrical billet should be placed between t wo counterrotating and wedge-shape dies, which move tangentially relative each other. The billet suffers plastic deformation (essentially, localized compressio n) during its rotation between the rotating dies. Compared to other numerical si mulation methods, the finite element method (FEM) has advantages in solving gene ral problems with complex shapes of the formed parts. In cross-wedge rolling, t here are four stages in the workpiece deformation process, namely knifing, guidi ng, stretching and sizing stage. It is time-consuming and expensive to design t he CWR process by trial and error method. The application of numerical simul ation for the CWR process will help engineers to efficiently improve the process development. Tselikov, Hayama, Jain and Kobayashi, and Higashimo applied the sl ip-line theory in study of CWR process analysis. Zb.pater studied CWR process i ncluding upsetting by upper-bound method. The above numerical simulation were b ased on the two-dimensional plain-strain assumption ignored the metal flow in workpiece axial direction. Therefore, the complex three-dimensional stress and deformation involved in CWR processes were not presented. Compared to other nume rical simulation methods, the finite element method (FEM) has advantages in solv ing general problems with complex shapes of the formed parts. As yet, a few 3-D finite element simulation studies on CWR process have been reported in literatu res. In this paper, the process of cross wedge rolling (CWR) has been simulated and analyzed by 3D rigid-plastic finite element method. Considering the charact eristic of CWR, the static implicit FEM program is selected. The models proposed in this study uses the commercial code DEFORM 3D to simulate the CWR process. T his is an implicit Lagrangian finite element code, which includes many new enhan cements functions. A new method of utilizing multiple processors using the MPI s tandard has been implemented. Automatic switching between the two different defo rmation solvers (Sparse Solver and Conjugate Gradient Solver) has also been impl emented in order to increase the speed of simulations. In this paper, all stages in CWR process are simulated to be able to closely understand and analyze the a ctual CWR process. For simulating all forming stages in CWR process, the dynam ic adaptive remeshing technology for tetrahedral solid elements was applied. T he stress distributions in cross section of forming workpiece are analyzed to in terpret fracture or rarefaction in the center of workpiece. Authors also analyze d the time-torque curve and the laws of load changing.
文摘The compaction and stress generation on terrain were always investigated based on empirical approaches or testing methods for tire/soil interaction.However,the analysis should be performed for various tires and at different soil strengths.With the increasing capacity of numerical computers and simulation software,finite element modeling of tire/terrain interaction seems a good approach for predicting the effect of change on the parameters.In this work,an elaborated 3D model fully complianning with the geometry of radial tire 115/60R13 was established,using commercial code Solidwork Simulation.The hyper-elastic and incompressible rubber as tire main material was analyzed by Moony-Rivlin model.The Drucker-Prager yield criterion was used to model the soil compaction.Results show that the model realistically predicts the laboratory tests outputs of the modeled tire on the soft soil.
基金Supported by National Natural Science Foundation of China(No.90815019)National Key Basic Research Program of China("973" Program,No.2007CB714101)Key Project in the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period(No.2006BAB04A13)
文摘Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability.
基金The National Natural Science Foundation of China(No.71671035,72001039)the Open Fund of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment(No.201901)the Open Fund of Jiangsu Wind Power Engineering Technology Center(No.ZK19-03-03)。
文摘An integrated approach was proposed to evaluate the remaining useful life(RUL)of corroded petroleum pipelines.Two types of failure modes(i.e.,leakage and burst failure)were considered,and the corresponding limit state functions(LSFs)were established with the structural reliability theory.A power-law function was applied to model the growth of corrosion defects,and the effect of external environmental factors on the growth of the pipeline s defect was considered.Moreover,the result was compared with the commonly used linear growth model.After that,a finite element simulation model was established to calculate the burst pressure of the pipeline with corrosion defects,and its accuracy was verified through hydraulic burst test and by comparison with international criteria.On that basis,the probability that the pipeline may fail was calculated with Monte Carlo simulation(MCS)and by considering the LSFs,and the pipeline s RUL was obtained accordingly.Furthermore,sensitivity analysis was conducted to determine the sensitivity parameters for the corrosion and RUL of the pipeline.The results indicate that the radial corrosion rate,wall thickness and working pressure have a great influence on the failure probability of the pipeline.Thus,corresponding measures should be adopted during the operation process of the pipeline to reduce the corrosion rate and increase the wall thickness,so as to prolong the pipeline s RUL.
基金Project(50575143)supported by the National Natural Science Foundation of ChinaProject(20040248005)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method.
基金This work was sponsored in part by National Natural Science Foundation of China(No.51869031)Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN201903801)+1 种基金Huzhou Key Laboratory of Green Building TechnologyThis work is financially supported by the Government College University,Faisalabad and Higher Education Commission,Pakistan.
文摘The energy produced by the melting stretching disks surface has a wide range of commercial applications,including semi-conductor material preparation,magma solidification,permafrost melting,and frozen land refreezing,among others.In view of this,in the current communication we analyzed magnetohydrodynamic flow ofMaxwell nanofluid between two parallel rotating disks.Nanofluids are important due to their astonishing properties in heat conduction flows and in the enhancement of electronic and manufacturing devices.Furthermore,the distinct tinysized particles Al_(2)O_(3)and TiO_(2)in theMaxwell water-based fluid for enhancing the heat transfer rate are analyzed.The heat equation is developed in the occurrence of thermal radiation.The influences of melting impacts are incorporated.The mathematical model is developed in the form of partial differential expressions then converted to ordinary differential equations by employing tool of similarity variables.Finite element method(FEM)is chosen for solving the nonlinear governing ordinary differential equations(ODEs)with necessary conditions.The consequence of flow parameters against the velocity profiles and heat transport field is considered.The noted novelty of this communication is to discuss the thermal transfer of Maxwell nanofluid model through double stretching disks with thermal radiation and melting phenomenon.Further,Al_(2)O_(3)/water and TiO_(2)/water are considered in the modeling.