期刊文献+
共找到43,186篇文章
< 1 2 250 >
每页显示 20 50 100
A Full Predictor-Corrector Finite Element Method for the One-Dimensional Heat Equation with Time-Dependent Singularities
1
作者 Jake L. Nkeck 《Journal of Applied Mathematics and Physics》 2024年第4期1364-1382,共19页
The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent ... The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method. 展开更多
关键词 SINGULARITIES finite element methods Heat Equation Predictor-Corrector Algorithm
下载PDF
Limit analysis of vertical anti-pulling screw pile group under inclined loading on 3D elastic-plastic finite element strength reduction method 被引量:11
2
作者 董天文 郑颖人 《Journal of Central South University》 SCIE EI CAS 2014年第3期1165-1175,共11页
Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the... Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the criteria of ultimate load and the concept of safety storage coefficient (Css) were advanced. The inclined ultimate loads by the static loading test, load increment method (LIM) and SRM are compared. Theoretically, the ultimate load of piles does not change with the loading levels when it is calculated by SRM. When the one strength reduction parameter is applied in the calculation boundary, there are calculating errors because the bearing capacity action of soils happened in the finite zone. The inclined 10adings are 108, 132 and 144 kN, and SSC are 1.07, 0.94 and 0.79, respectively, so the calculation values of ultimate loads are about 115.56, 124.08 and 113.76 kN, respectively. The error between calculations and observation values is less than 6%. But .the error between calculations of LIM and observations is 20%. Because of the effect of inclined loading, the push-rotation phenomenon of screw pile group appears. Under this testing, the ultimate bearing capacity of piles is mostly determined by the horizontal ultimate bearing capacity, and the effect of the vertical component of inclined load should also be considered. 展开更多
关键词 strength reduction method screw pile group ultimate load inclined loading
下载PDF
A stable implicit nodal integration-based particle finite element method(N-PFEM)for modelling saturated soil dynamics 被引量:1
3
作者 Liang Wang Xue Zhang +1 位作者 Jingjing Meng Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2172-2183,共12页
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene... In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics. 展开更多
关键词 Particle finite element method Nodal integration Dynamic saturated media Second-order cone programming(SOCP)
下载PDF
THE SUPERCLOSENESS OF THE FINITE ELEMENT METHOD FOR A SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEM ON A BAKHVALOV-TYPE MESH IN 2D
4
作者 Chunxiao ZHANG Jin ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1572-1593,共22页
For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of ... For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments. 展开更多
关键词 singularly perturbed CONVECTION-DIFFUSION finite element method SUPERCLOSENESS Bakhvalov-type mesh
下载PDF
A Deep Learning Approach to Shape Optimization Problems for Flexoelectric Materials Using the Isogeometric Finite Element Method
5
作者 Yu Cheng Yajun Huang +3 位作者 Shuai Li Zhongbin Zhou Xiaohui Yuan Yanming Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1935-1960,共26页
A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization... A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization. 展开更多
关键词 Shape optimization deep learning flexoelectric structure finite element method isogeometric
下载PDF
Extended finite element-based cohesive zone method for modeling simultaneous hydraulic fracture height growth in layered reservoirs
6
作者 Lei Yang Baixi Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2960-2981,共22页
In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy... In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed. 展开更多
关键词 Hydraulic fracturing Layered reservoir Simultaneous height growth In situ stress Fracture spacing Extended finite element method(XFEM) Cohesive zone method(CZM)
下载PDF
A Calculation Method of Double Strength Reduction for Layered Slope Based on the Reduction of Water Content Intensity
7
作者 Feng Shen Yang Zhao +1 位作者 Bingyi Li Kai Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期221-243,共23页
The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties... The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties of different soil layers of the slopes are different,so the single coefficient strength reduction method(SRM)is not enough to reflect the actual critical state of the slopes.Considering that the water content of the soil in the natural state is the main factor for the strength of the soil,the attenuation law of shear strength of clayey soil changing with water content is fitted.This paper also establishes the functional relationship between different reduction coefficients.Then,a USDFLD subroutine is programmed using the secondary development function of finite element software.Controlling the relationship between field variables and calculation time realizes double strength reduction applicable to the layered slope.Finally,by comparing the calculation results of different examples,it is proved that the stress and displacement distribution of the critical slope state obtained by the improved method is more realistic,and the calculated safety factor is more reliable.The newly proposedmethod considers the difference of intensity attenuation between different soil layers under natural conditions and avoids the disadvantage of the strength reduction method with uniform parameters,which provides a new idea and method for stability analysis of layered and complex slopes. 展开更多
关键词 Double strength reduction slopes stability water content factor of safety numerical methods
下载PDF
Galerkin-based quasi-smooth manifold element(QSME)method for anisotropic heat conduction problems in composites with complex geometry
8
作者 Pan WANG Xiangcheng HAN +2 位作者 Weibin WEN Baolin WANG Jun LIANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期137-154,共18页
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ... The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations. 展开更多
关键词 anisotropic heat conduction quasi-smooth manifold element(QSME) composite with complex geometry numerical simulation finite element method(FEM)
下载PDF
Hermite Finite Element Method for Vibration Problem of Euler-Bernoulli Beam on Viscoelastic Pasternak Foundation
9
作者 Pengfei Ji Zhe Yin 《Engineering(科研)》 2024年第10期337-352,共16页
Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul... Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis. 展开更多
关键词 Viscoelastic Pasternak Foundation Beam Vibration Equation Hermite finite element method Error Estimation Numerical Simulation
下载PDF
Multiscale Finite Element Method for Coupling Analysis of Heterogeneous Magneto-Electro-Elastic Structures in Thermal Environment
10
作者 Xinyue Li Xiaolin Li Hangran Yang 《Journal of Applied Mathematics and Physics》 2024年第9期3099-3113,共15页
Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditiona... Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency. 展开更多
关键词 Multiscale finite element method MAGNETO-ELECTRO-ELASTIC Multifield Coupling Numerical Base Functions
下载PDF
Gradient Recovery Based Two-Grid Finite Element Method for Parabolic Integro-Differential Optimal Control Problems
11
作者 Miao Yang 《Journal of Applied Mathematics and Physics》 2024年第8期2849-2865,共17页
In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and ... In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results. 展开更多
关键词 Optimal Control Problem Gradient Recovery Two-Grid finite element method
下载PDF
Self-adaptive strategy for one-dimensional finite element method based on EEP method with optimal super-convergence order 被引量:4
12
作者 袁驷 邢沁妍 +1 位作者 王旭 叶康生 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第5期591-602,共12页
Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite ele... Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach. 展开更多
关键词 finite element method (FEM) self-adaptive solution super-convergence optimal convergence order element energy projection condensed shape functions
下载PDF
Application of strength reduction method to dynamic anti-sliding stability analysis of high gravity dam with complex dam foundation 被引量:3
13
作者 Deng-hong CHEN Cheng-bin DU 《Water Science and Engineering》 EI CAS 2011年第2期212-224,共13页
Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduct... Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduction method was used to study the deep anti-sliding stability of a high gravity dam with a complex dam foundation in response to strong earthquake-induced ground action. Based on static anti-sliding stability analysis of the dam foundation undertaken by decreasing the shear strength parameters of the rock mass in equal proportion, the seismic time history analysis was carried out. The proposed instability criterion for the dynamic strength reduction method was that the peak values of dynamic displacements and plastic strain energy change suddenly with the increase of the strength reduction factor. The elasto-plastic behavior of the dam foundation was idealized using the Drucker-Prager yield criterion based on the associated flow rule assumption. The result of elasto-plastic time history analysis of an overflow dam monolith based on the dynamic strength reduction method was compared with that of the dynamic linear elastic analysis, and the reliability of elasto-plastic time history analysis was confirmed. The results also show that the safety factors of the dam-foundation system in the static and dynamic cases are 3.25 and 3.0, respectively, and that the F2 fault has a significant influence on the anti-sliding stability of the high gravity dam. It is also concluded that the proposed instability criterion for the dynamic strength reduction method is feasible. 展开更多
关键词 dynamic anti-sliding stability complex dam foundation dynamic strength reduction method instability criteria elasto-plastie model dynamic time history analysis gravity dam
下载PDF
Simulation of isothermal precision extrusion of NiTi shape memory alloy pipe coupling by combining finite element method with cellular automaton 被引量:3
14
作者 ZHANG Yan-qiu JIANG Shu-yong +1 位作者 ZHAO Ya-nan ZHU Xiao-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期506-514,共9页
In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method... In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method(FEM) with cellular automaton(CA) was developed and the relationship between the macroscopic field variables and the microscopic internal variables was established.The results show that there exists a great distinction among the microstructures in different zones of pipe coupling because deformation histories of these regions are diverse.Large plastic deformation may result in fine recrystallized grains,whereas the recrystallized grains may grow very substantially if there is a rigid translation during the deformation,even if the final plastic strain is very large.As a consequence,the deformation history has a significant influence on the evolution path of the DRX as well as the final microstructures of the DRX,including the morphology,the mean grain size and the recrystallization fraction. 展开更多
关键词 shape memory alloy dynamic recrystallization cellular automaton finite element method EXTRUSION
下载PDF
LOCAL AND PARALLEL FINITE ELEMENT METHOD FOR THE MIXED NAVIER-STOKES/DARCY MODEL WITH BEAVERS-JOSEPH INTERFACE CONDITIONS 被引量:2
15
作者 杜光芝 左立云 《Acta Mathematica Scientia》 SCIE CSCD 2017年第5期1331-1347,共17页
In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed... In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed and analyzed. Optimal errors are obtained and numerical experiments are presented to show the efficiency and effectiveness of the local and parallel finite element algorithm. 展开更多
关键词 Navier-Stokes equations Darcy's law two-grid algorithm Beavers-Joseph interface conditions parallel finite element method
下载PDF
Thermoelastic analysis of multiple defects with the extended finite element method 被引量:2
16
作者 Honggang Jia Yufeng Nie 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第6期1123-1137,共15页
In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or micr... In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or microscopic defects under thermal/mechanical load. The effects of different shapes of multiple inclusions on the material thermomechanical response are investigated, and the level set method is coupled with XFEM to analyze the interaction of multiple defects. Further, the discretized extended finite element approximations in relation to thermoelastic problems of multiple defects under displacement or temperature field are given. Also, the interfaces of cracks or materials are represented by level set functions, which allow the mesh assignment not to conform to crack or material interfaces. Moreover, stress intensity factors of cracks are obtained by the interaction integral method or the M-integral method, and the stress/strain/stiffness fields are simulated in the case of multiple cracks or multiple inclusions. Finally, some numerical examples are provided to demonstrate the accuracy of our proposed method. 展开更多
关键词 Multiple defects Stress intensity factors extended finite element method (XFEM) THERMOELASTIC
下载PDF
Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation 被引量:4
17
作者 Hongbo Guo Yuqing Hou +3 位作者 Xiaowei He Jingjing Yu Jingxing Cheng Xin Pu 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2014年第2期70-81,共12页
Recently,the simplified spherical harmonics equations(SP)model has at tracted much att entionin modeling the light propagation in small tissue ggeometriesat visible and near-infrared wave-leng ths.In this paper,we rep... Recently,the simplified spherical harmonics equations(SP)model has at tracted much att entionin modeling the light propagation in small tissue ggeometriesat visible and near-infrared wave-leng ths.In this paper,we report an eficient numerical method for fluorescence moleeular tom-ography(FMT)that combines the advantage of SP model and adaptive hp finite elementmethod(hp-FEM).For purposes of comparison,hp-FEM and h-FEM are,respectively applied tothe reconstruction pro cess with diffusion approximation and SPs model.Simulation experiments on a 3D digital mouse atlas and physical experiments on a phantom are designed to evaluate thereconstruction methods in terms of the location and the reconstructed fluorescent yield.Theexperimental results demonstrate that hp-FEM with SPy model,yield more accurate results thanh-FEM with difusion approximation model does.The phantom experiments show the potentialand feasibility of the proposed approach in FMT applications. 展开更多
关键词 Fluorescence molecular tomog maphy simplified spherical harmonics equations reconstruction adaptive finite element method.
下载PDF
A Computational Study with Finite Element Method and Finite Difference Method for 2D Elliptic Partial Differential Equations 被引量:2
18
作者 George Papanikos Maria Ch. Gousidou-Koutita 《Applied Mathematics》 2015年第12期2104-2124,共21页
In this paper, we consider two methods, the Second order Central Difference Method (SCDM) and the Finite Element Method (FEM) with P1 triangular elements, for solving two dimensional general linear Elliptic Partial Di... In this paper, we consider two methods, the Second order Central Difference Method (SCDM) and the Finite Element Method (FEM) with P1 triangular elements, for solving two dimensional general linear Elliptic Partial Differential Equations (PDE) with mixed derivatives along with Dirichlet and Neumann boundary conditions. These two methods have almost the same accuracy from theoretical aspect with regular boundaries, but generally Finite Element Method produces better approximations when the boundaries are irregular. In order to investigate which method produces better results from numerical aspect, we apply these methods into specific examples with regular boundaries with constant step-size for both of them. The results which obtained confirm, in most of the cases, the theoretical results. 展开更多
关键词 finite element method finite Difference method Gauss Numerical Quadrature DIRICHLET BOUNDARY CONDITIONS NEUMANN BOUNDARY CONDITIONS
下载PDF
Immersed Interface Finite Element Methods for Elasticity Interface Problems with Non-Homogeneous Jump Conditions 被引量:3
19
作者 Yan Gong Zhilin Li 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第1期23-39,共17页
In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body... In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence. 展开更多
关键词 Immersed interface finite element methods elasticity interface problems singularity removal homogeneous and non-homogeneous jump conditions level-set function.
下载PDF
Distributed Lagrange Multiplier/Fictitious Domain Finite Element Method for a Transient Stokes Interface Problem with Jump Coefficients 被引量:2
20
作者 Andrew Lundberg Pengtao Sun +1 位作者 Cheng Wang Chen-song Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第4期35-62,共28页
The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully disc... The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully discrete DLM/FD-mixed finite element scheme are developed for the first time for this problem with a moving interface,where the arbitrary Lagrangian-Eulerian(ALE)technique is employed to deal with the moving and immersed subdomain.Stability and optimal convergence properties are obtained for both schemes.Numerical experiments are carried out for different scenarios of jump coefficients,and all theoretical results are validated. 展开更多
关键词 TRANSIENT STOKES interface problem JUMP COEFFICIENTS DISTRIBUTED LAGRANGE multiplier fictitious domain method mixed finite element an optimal error estimate stability
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部