Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize ...Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites.展开更多
Percutaneous electrical nerve stimulation of an injured nerve can promote and accelerate peripheral nerve regeneration and improve function.When performing acupuncture and moxibustion,locating the injured nerve using ...Percutaneous electrical nerve stimulation of an injured nerve can promote and accelerate peripheral nerve regeneration and improve function.When performing acupuncture and moxibustion,locating the injured nerve using ultrasound before percutaneous nerve stimulation can help prevent further injury to an already injured nerve.However,stimulation parameters have not been standardized.In this study,we constructed a multi-layer human forearm model using finite element modeling.Taking current density and activated function as optimization indicators,the optimal percutaneous nerve stimulation parameters were established.The optimal parameters were parallel placement located 3 cm apart with the injury site at the midpoint between the needles.To validate the efficacy of this regimen,we performed a randomized controlled trial in 23 patients with median nerve transection who underwent neurorrhaphy.Patients who received conventional rehabilitation combined with percutaneous electrical nerve stimulation experienced greater improvement in sensory function,motor function,and grip strength than those who received conventional rehabilitation combined with transcutaneous electrical nerve stimulation.These findings suggest that the percutaneous electrical nerve stimulation regimen established in this study can improve global median nerve function in patients with median nerve transection.展开更多
Convective heat transfer associated with the circulation of porefluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high. In order to un...Convective heat transfer associated with the circulation of porefluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high. In order to understand the process of Snpolymetallic mineralization in the Dachang ore district of Guangxi, a finite element method has been used in this study to simulate both pore-fluid flow and heat transfer in this district. On the basis of related geological, tectonic and geophysical constraints, a computational model was established. It enables a computational simulation and sensitivity analysis to be carried out for investigating ore-forming pore-fluid flow and other key factors that may affect hydrothermal ore genesis in the district. The related simulation results have indicated that: (1) permeable fault zones in the Dacbang ore district can serve as preferential pathways for pore-fluid flow on a regional-scale; and (2) the pore-fluid flow can affect the salinity distribution. This latter factor is part of the reason why Sn-polymetallic mineralization has taken place in this district.展开更多
Recent seismic events have raised concerns over the safety and vulnerability of reinforced concrete moment resisting frame "RC-MRF" buildings. The seismic response of such buildings is greatly dependent on the compu...Recent seismic events have raised concerns over the safety and vulnerability of reinforced concrete moment resisting frame "RC-MRF" buildings. The seismic response of such buildings is greatly dependent on the computational tools used and the inherent assumptions in the modelling process. Thus, it is essential to investigate the sensitivity of the response demands to the corresponding modelling assumption. Many parameters and assumptions are justified to generate effective structural finite element(FE) models of buildings to simulate lateral behaviour and evaluate seismic design demands. As such, the present study focuses on the development of reliable FE models with various levels of refinement. The effects of the FE modelling assumptions on the seismic response demands on the design of buildings are investigated. the predictive ability of a FE model is tied to the accuracy of numerical analysis; a numerical analysis is performed for a series of symmetric buildings in active seismic zones. The results of the seismic response demands are presented in a comparative format to confirm drift and strength limits requirements. A proposed model is formulated based on a simplified modeling approach, where the most refined model is used to calibrate the simplified model.展开更多
In finite element modeling of impact,it is necessary to define appropriate values of the normal contact stiffness,Kn,and the Integration Time Step(ITS).Because impacts are usually of very short duration,very small ITS...In finite element modeling of impact,it is necessary to define appropriate values of the normal contact stiffness,Kn,and the Integration Time Step(ITS).Because impacts are usually of very short duration,very small ITSs are required.Moreover,the selection of a suitable value of Kn is a critical issue,as the impact behavior depends dramatically on this parameter.In this work,a number of experimental tests and finite element analyses have been performed in order to obtain an appropriate value of Kn for the interaction between a bristle of a gutter brush for road sweeping and a concrete surface.Furthermore,a suitable ITS is determined.The experiments consist of releasing a steel bristle that is placed vertically at a certain distance from a concrete surface and tracking the impact.Similarly,in the finite element analyses,a beam is modeled in free fall and impacting a surface;contact and target elements are attached to the beam and the surface,respectively.The results of the experiments and the modeling are integrated through the principle of conservation of energy,the principle of linear impulse and momentum,and Newton’s second law.The results demonstrate that,for the case studied,Kn and the impact time tend to be independent of the velocity just before impact and that Kn has a very large variation,as concrete is a composite material with a rough surface.Also,the ratio between the largest height of the bristle after impact and the initial height tends to be constant.展开更多
An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell ...An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current.展开更多
To control the vibration level of ships under construction,MSC Software’s Patran&Nastran modeling solutions can be used to establish a detailed finite element model of a new manned submersible support mother ship...To control the vibration level of ships under construction,MSC Software’s Patran&Nastran modeling solutions can be used to establish a detailed finite element model of a new manned submersible support mother ship based on a line drawing,including the deck layout,bulkhead section,and stiffener distribution.After a comprehensive analysis of the ship simulation conditions,boundaries,and excitation forces of the main operating equipment,modal analysis and calculation of the ship vibration can be conducted.In this study,we calculated and analyzed the vibration response of key points in the stern area of the ship’s main deck and the submersible warehouse area under design loading working conditions.We then analyzed the vibration response of typical decks(including the compass deck,steering deck,captain’s deck,forecastle deck,and main deck)under the main excitation forces and moments(such as the full swing pod and generator sets).The analysis results showed that under DESIDEP working conditions,the vibration of each deck and key areas of the support mother ship could meet the vibration code requirements of the ship’s preliminary design(using the pod excitation and generator sets).Similarly,the vibration response of a scientific research ship under other loading conditions also met the requirements of the code and provided data support for a comprehensive understanding of the ship’s vibration and noise levels.Using actual vibration measurements,the accuracy of the vibration level simulations using finite element modeling was verified,the vibration of each area of the ship comfortably meeting the requirements of the China Classification Society.展开更多
Based on the latest result in research on 3D seismic wave velocity structure of crust and uppermost mantle and taking geological setting and fracture zones into consideration, a 3D geological model for the studied reg...Based on the latest result in research on 3D seismic wave velocity structure of crust and uppermost mantle and taking geological setting and fracture zones into consideration, a 3D geological model for the studied region is built up. The boundary constraint and force loading boundary condition for the model are determined according to the characteristics of crustal stress field deduced from earthquake focal mechanism and in-situ stress measurement data. Using linear elastic material model a 3D finite element modeling is conducted to study the characteristics of crustal stress field. A comparison analysis between the simulated stress field and earthquake locations reveals that the moderate and strong earthquakes generally occurred in the zones with high shear stress gradient. Furthermore, the paper notices a few potential earthquake-prone regions.展开更多
The electromagnetic forming is a procedure of high-speed processing,which favors the increase of the formability of some plastically deformed metals.In order to evaluate the capacity of some light metals,such as alumi...The electromagnetic forming is a procedure of high-speed processing,which favors the increase of the formability of some plastically deformed metals.In order to evaluate the capacity of some light metals,such as aluminum and its alloys,to be deformed through this procedure,it is useful to know the stress and strain state that occurs in the material during forming.In this work,the modeling of stresses and strains in electromagnetically deformed AlMn0.5Mg0.5 sheet was made.The modeling was achieved using the finite element method and it was verified through experimental tests.To determine the residual stresses,the X-ray diffraction method was used.The strains were established by measuring the displacements of the nodes in the network inscribed on the specimen by means of three coordinates measuring machine.A good agreement between the modeling results and experimental data was found.展开更多
Based on the latest achievement about activities of geological structure, a 3-D finite-element model containing four layers of upper crust, lower crust (two layers) and upper mantle is established in the paper. By rep...Based on the latest achievement about activities of geological structure, a 3-D finite-element model containing four layers of upper crust, lower crust (two layers) and upper mantle is established in the paper. By repeated tests and revisions, the boundary conditions of the model are determined. And then the background stress field, the stress field caused by fault creep and the stress field triggered by strong earthquake in Sichuan-Yunnan region, as well as their dynamic variations are calculated. The results indicate that the latter earthquake often occurs in the area with positive Coulomb rupture stress change associated with the former one, the former earthquake has a triggering effect on the latter one to a certain extent, and strong earthquake often occur in groups under the background of high stress, which is of great significance for distinguishing seismic anomalies, as well as for improving the level of earthquake prediction.展开更多
Precise evaluation of hip fracture risk leads to reduce hip fracture occurrence in individuals and assist to check the effect of a treatment.A subject-specific QCT-based finite element model is introduced to evaluate ...Precise evaluation of hip fracture risk leads to reduce hip fracture occurrence in individuals and assist to check the effect of a treatment.A subject-specific QCT-based finite element model is introduced to evaluate hip fracture risk using the strain energy,von-Mises stress,and von-Mises strain criteria during the single-leg stance and the sideways fall configurations.Choosing a proper failure criterion in hip fracture risk assessment is very important.The aim of this study is to define hip fracture risk index using the strain energy,von Mises stress,and von Mises strain criteria and compare the calculated fracture risk indices using these criteria at the critical regions of the femur.It is found that based on these criteria,the hip fracture risk at the femoral neck and the intertrochanteric region is higher than other parts of the femur,probably due to the larger amount of cancellous bone in these regions.The study results also show that the strain energy criterion gives more reasonable assessment of hip fracture risk based on the bone failure mechanism and the von-Mises strain criterion is more conservative than two other criteria and leads to higher estimate of hip fracture risk indices.展开更多
Advanced fiber reinforced polymer composites have been increasingly applied to various structural components. One of the important processes to fabricate high performance laminated composites is an autoclave assisted ...Advanced fiber reinforced polymer composites have been increasingly applied to various structural components. One of the important processes to fabricate high performance laminated composites is an autoclave assisted prepreg lay-up. Since the quality of laminated composites is largely affected by the cure cycle, selection of an appropriate cure cycle for each application is important and must be optimized. Thus, some fundamental model of the consolidation and cure processes is necessary for selecting suitable parameters for a specific application. This article is concerned with the "flow-compaction" model during the autoclave processing of composite materials. By using a weighted residual method, two-dimensional finite element formulation for the consolidation process of thick thermosetting composites is presented and the corresponding finite element code is developed. Numerical examples, including comparison of the present numerical results with one-dimensional and twodimensional analytical solutions, are given to illustrate the accuracy and effectiveness of the proposed finite element formulation. In addition, a consolidation simulation of AS4/3501-6 graphite/epoxy laminate is carded out and compared with the experimental results available in the literature.展开更多
This article proposes a finite element model (FEM) for predicting the acoustic scattering from an encapsulated microbubble near rigid boundary. The validity of the model is first examined by comparing the acoustic n...This article proposes a finite element model (FEM) for predicting the acoustic scattering from an encapsulated microbubble near rigid boundary. The validity of the model is first examined by comparing the acoustic nonlinear response of a free microbubble with that obtained by the Church model. Then this model is used to investigate the effect of the rigid boundary on acoustic scattering signals from microbubble. The results indicate that the resonance frequency decreases while the oscillation amplitude increases as the microbubble approaches the rigid boundary. In addition, the fundamental component of the acoustic scattering signal is enhanced compared with that of the free microbubble.展开更多
To study the overall vibration characteristics of the sprag clutch⁃flexible rotor system(SC⁃FRS)under high⁃speed operating conditions,a finite element model of SC⁃FRS considering rotor flexibility and bearing support ...To study the overall vibration characteristics of the sprag clutch⁃flexible rotor system(SC⁃FRS)under high⁃speed operating conditions,a finite element model of SC⁃FRS considering rotor flexibility and bearing support stiffness was established based on the proposed calculation method of the stiffness matrix.According to this model,the natural frequency and mode shape of the system are calculated,and the correctness of the model was verified by comparing it with the calculation results of ANSYS software.Under the action of unbalance,the bending⁃torsion coupled vibration and the dynamic load of the inter⁃shaft bearings were analyzed,and it is found that the resonant peak in the torsional direction has the same resonance frequency as that in the bending direction.A test rig for the sprag clutch⁃rotor system was built,and the axis trajectory and critical speed were tested.The test results show that the finite element model of SC⁃FRS can accurately describe the vibration characteristics of the system.The coupling vibration characteristics analysis of the sprag clutch⁃flexible rotor system can provide theoretical guidance for the dynamic design of the sprag clutch components.展开更多
Based on research result concerning the preparation and activity of strong earthquakes in groups and using the finite element method, a finite element dynamic model for Southwest China is established in this paper. Us...Based on research result concerning the preparation and activity of strong earthquakes in groups and using the finite element method, a finite element dynamic model for Southwest China is established in this paper. Using this model, the stress adjustment in the whole of the Southwest China region in response to the stress change due to strong earthquake occurrence is studied. The preliminary result shows that many strong earthquakes occurred in areas where the stress heightened after the last strong earthquake. So, the finite element model set up in this paper is useful for judging the regions where strong earthquakes are likely to occur in future.展开更多
The temperature-dependent effective thermal conductivity of UN-X-UO_(2)(X=Mo,W)nuclear fuel composite was estimated.Following the experimental design,the thermal conductivity was calculated using Finite Element Modeli...The temperature-dependent effective thermal conductivity of UN-X-UO_(2)(X=Mo,W)nuclear fuel composite was estimated.Following the experimental design,the thermal conductivity was calculated using Finite Element Modeling(FEM),and compared with analytical models for 10%,30%,50%,and 70%(in mass)uncoated/coated UN microspheres in a UO2 matrix.The FEM results show an increase in the fuel thermal conductivity as the mass fraction of the UN microspheres increases from 1.2 to 4.6 times the UO2 reference at 2,000 K.The results from analytical models agree with the thermal conductivity estimated by FEM.The results also show that Mo and W coatings have similar thermal behaviors,and the coating thickness influences the thermal conductivity of the composite.At higher weight fractions,the thermal conductivity of the fuel composite at room temperature is substantially influenced by the high thermal conductivity coatings approaching that of UN.Thereafter,the thermal conductivity from FEM was used in the fuel thermal performance evaluation during LWR normal operation to calculate the maximum centerline temperature.The results show a significant decrease in the fuel maximum centerline temperature ranging from−94 K for 10% UN to−414 K for 70%(in mass)UN compared to UO2 under the same operating conditions.展开更多
The large storage requirement is a critical issue in cross-correlation imaging-condition based reverse time migration(RTM),because it requires the operation of the source and receiver wavefields at the same time.The b...The large storage requirement is a critical issue in cross-correlation imaging-condition based reverse time migration(RTM),because it requires the operation of the source and receiver wavefields at the same time.The boundary value method(BVM),based on the finite difference method(FDM),can be used to reconstruct the source wavefield in the reverse time propagation in the same way as the receiver wavefield,which can reduce the storage burden of the RTM data.Considering that the FDM cannot well handle models with discontinuous material properties and rough interfaces,we develop a source wavefield reconstruction strategy based on the finite element method(FEM),using proper orthogonal decomposition(POD)to enhance computational efficiency.In this method,we divide the whole time period into several segments,and construct the POD basis functions to get a reduced order model(ROM)for the source wavefield reconstruction in each segment.We show the corresponding quantitative analysis of the storage requirement of the POD-FEM.Numerical tests on the homogeneous model show the effectiveness of the proposed method,while the layered model and part of the Marmousi model tests indicate that the POD-FEM can keep an excellent balance between computational efficiency and memory usage compared with the full-stored method(FSM)and the BVM,and can be effectively applied in imaging.展开更多
The consolidation process of SiC<sub>f</sub>/Ti-6Al-4V composites by matrix-coated fiber (MCF) method via hot pressing was investigated using finite element modeling (FEM). By analyzing the elastic–plasti...The consolidation process of SiC<sub>f</sub>/Ti-6Al-4V composites by matrix-coated fiber (MCF) method via hot pressing was investigated using finite element modeling (FEM). By analyzing the elastic–plastic contact deformation of the representative aligned coated fibers, the consolidation maps delineating the time–temperature–pressure relationship for full densification were constructed. Both the flow coefficient and the contact area coefficient used to describe the contact deformation were calculated according to the model. In addition, the effect of fiber content on matrix stress distribution was analyzed. The results show that fiber content is a significant factor that influences the densification process. Higher fiber content will lower the consolidation rate.展开更多
The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement co...The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement concrete facing panels,and gravity-type earth-retaining walls.The finite element(FE)simulations utilized a 3D plane strain condition to model full-scale ER walls and numerous nonlinear dynamics analyses.The seismic performance of differentmodels,which includes reinforcement concrete panels and gravity-type and hollowprecast concrete ER walls,was simulated and examined using the FE approach.It also displays comparative studies such as stress distribution,deflection of the wall,acceleration across the wall height,lateral wall displacement,lateral wall pressure,and backfill plastic strain.Three components of the created ER walls were found throughout this research procedure.One is a granular reinforcement backfill,while the other is a wall-facing panel and base foundation.The dynamic response effects of varied earth-retaining walls have also been studied.It was discovered that the facing panel of the model significantly impacts the earthquake-induced displacement of ER walls.The proposed analytical model’s validity has been evaluated and compared with the reinforcement concrete facing panels,gravity-type ER wall,scientifically available data,and American Association of State Highway and Transportation Officials(AASHTO)guidelines results based on FE simulation.The results of the observations indicate that the hollow prefabricated concrete ER wall is the most feasible option due to its lower displacement and high-stress distribution compared to the two types.The methodology and results of this study establish standards for future analogous investigations and professionals,particularly in light of the increasing computational capabilities of desktop computers.展开更多
The Tianshan Mountains,located in the northwestern China,are bounded by the Tarim Basin to south and the Junggar Basin to north.In the north piedmont of this mountain range,ongoing thrusting and folding forms a set of...The Tianshan Mountains,located in the northwestern China,are bounded by the Tarim Basin to south and the Junggar Basin to north.In the north piedmont of this mountain range,ongoing thrusting and folding forms a set of roughly parallel anticlines.Geological observations predicted that averaged over last^1 Ma time scale,the shortening rates of these anticlines are about2.1–5.5 mm/a;However by averaged over about 10±2 kyr,their shortening rates reduce to merely about 1.25±0.5 mm/a.The slow shortening of the anticlines in the last^10±2 kyr is coarsely concurrent in time with the last global deglaciation.Here,we use a two-dimensional finite element model to explore crustal deformation across north piedmont of the Tianshan Mountains under various erosion-sedimentation conditions that are assumed to represent the climate-controlled surface process.Numerical experiments show that with a relatively weak erosion-sedimentation strength,the crustal shortening is accommodated mainly by north piedmont of the Tianshan Mountains,similar to the high shortening rate of anticlines averaged over the last^1Ma.By increasing erosion-sedimentation strength,the resultant crustal shortening is transformed gradually toward the Tianshan Mountains,resulting in the shortening rate in its north piedmont being decelerated to what is observed as averaged over the last^10±2 kyr.This result suggests that erosion and sedimentation could play an important role mechanically on strain localization across an intra-continent active tectonic belt.Hence,if the climate change around the last global deglaciation could be simply representative to the enhancement of surface erosion and sedimentation across the pre-existed Tianshan Mountains and its foreland,our models indicate that the observed shortening-rate variations averaged over^1 Ma and^10±2kyr time scales around north piedmont of the Tianshan Mountains should be resulted from climate changes.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3707803)the National Natural Science Foundation of China(Grant Nos.12072179 and 11672168)+1 种基金the Key Research Project of Zhejiang Lab(Grant No.2021PE0AC02)Shanghai Engineering Research Center for Inte-grated Circuits and Advanced Display Materials.
文摘Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites.
基金supported by the National Natural Science Foundation of China,No.81801787(to XZS)China Postdoctoral Science Foundation,No.2018M640238(to XZS)the Natural Science Foundation of Tianjin,No.20JCQNJC01690(to XLC)。
文摘Percutaneous electrical nerve stimulation of an injured nerve can promote and accelerate peripheral nerve regeneration and improve function.When performing acupuncture and moxibustion,locating the injured nerve using ultrasound before percutaneous nerve stimulation can help prevent further injury to an already injured nerve.However,stimulation parameters have not been standardized.In this study,we constructed a multi-layer human forearm model using finite element modeling.Taking current density and activated function as optimization indicators,the optimal percutaneous nerve stimulation parameters were established.The optimal parameters were parallel placement located 3 cm apart with the injury site at the midpoint between the needles.To validate the efficacy of this regimen,we performed a randomized controlled trial in 23 patients with median nerve transection who underwent neurorrhaphy.Patients who received conventional rehabilitation combined with percutaneous electrical nerve stimulation experienced greater improvement in sensory function,motor function,and grip strength than those who received conventional rehabilitation combined with transcutaneous electrical nerve stimulation.These findings suggest that the percutaneous electrical nerve stimulation regimen established in this study can improve global median nerve function in patients with median nerve transection.
基金financially supported by the Natural Science Foundation of China(Grant No:10872219)
文摘Convective heat transfer associated with the circulation of porefluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high. In order to understand the process of Snpolymetallic mineralization in the Dachang ore district of Guangxi, a finite element method has been used in this study to simulate both pore-fluid flow and heat transfer in this district. On the basis of related geological, tectonic and geophysical constraints, a computational model was established. It enables a computational simulation and sensitivity analysis to be carried out for investigating ore-forming pore-fluid flow and other key factors that may affect hydrothermal ore genesis in the district. The related simulation results have indicated that: (1) permeable fault zones in the Dacbang ore district can serve as preferential pathways for pore-fluid flow on a regional-scale; and (2) the pore-fluid flow can affect the salinity distribution. This latter factor is part of the reason why Sn-polymetallic mineralization has taken place in this district.
基金Scientific Research Deanship,Taibah University Grant No.6363/436
文摘Recent seismic events have raised concerns over the safety and vulnerability of reinforced concrete moment resisting frame "RC-MRF" buildings. The seismic response of such buildings is greatly dependent on the computational tools used and the inherent assumptions in the modelling process. Thus, it is essential to investigate the sensitivity of the response demands to the corresponding modelling assumption. Many parameters and assumptions are justified to generate effective structural finite element(FE) models of buildings to simulate lateral behaviour and evaluate seismic design demands. As such, the present study focuses on the development of reliable FE models with various levels of refinement. The effects of the FE modelling assumptions on the seismic response demands on the design of buildings are investigated. the predictive ability of a FE model is tied to the accuracy of numerical analysis; a numerical analysis is performed for a series of symmetric buildings in active seismic zones. The results of the seismic response demands are presented in a comparative format to confirm drift and strength limits requirements. A proposed model is formulated based on a simplified modeling approach, where the most refined model is used to calibrate the simplified model.
文摘In finite element modeling of impact,it is necessary to define appropriate values of the normal contact stiffness,Kn,and the Integration Time Step(ITS).Because impacts are usually of very short duration,very small ITSs are required.Moreover,the selection of a suitable value of Kn is a critical issue,as the impact behavior depends dramatically on this parameter.In this work,a number of experimental tests and finite element analyses have been performed in order to obtain an appropriate value of Kn for the interaction between a bristle of a gutter brush for road sweeping and a concrete surface.Furthermore,a suitable ITS is determined.The experiments consist of releasing a steel bristle that is placed vertically at a certain distance from a concrete surface and tracking the impact.Similarly,in the finite element analyses,a beam is modeled in free fall and impacting a surface;contact and target elements are attached to the beam and the surface,respectively.The results of the experiments and the modeling are integrated through the principle of conservation of energy,the principle of linear impulse and momentum,and Newton’s second law.The results demonstrate that,for the case studied,Kn and the impact time tend to be independent of the velocity just before impact and that Kn has a very large variation,as concrete is a composite material with a rough surface.Also,the ratio between the largest height of the bristle after impact and the initial height tends to be constant.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA09020402the National Integrate Circuit Research Program of China under Grant No 2009ZX02023-003+1 种基金the National Natural Science Foundation of China under Grant Nos 61261160500,61376006,61401444 and 61504157the Science and Technology Council of Shanghai under Grant Nos 14DZ2294900,15DZ2270900 and 14ZR1447500
文摘An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current.
基金Supported by the Research and Implementation of Sea Trial Technology(Grant No.2016YFC03000704).
文摘To control the vibration level of ships under construction,MSC Software’s Patran&Nastran modeling solutions can be used to establish a detailed finite element model of a new manned submersible support mother ship based on a line drawing,including the deck layout,bulkhead section,and stiffener distribution.After a comprehensive analysis of the ship simulation conditions,boundaries,and excitation forces of the main operating equipment,modal analysis and calculation of the ship vibration can be conducted.In this study,we calculated and analyzed the vibration response of key points in the stern area of the ship’s main deck and the submersible warehouse area under design loading working conditions.We then analyzed the vibration response of typical decks(including the compass deck,steering deck,captain’s deck,forecastle deck,and main deck)under the main excitation forces and moments(such as the full swing pod and generator sets).The analysis results showed that under DESIDEP working conditions,the vibration of each deck and key areas of the support mother ship could meet the vibration code requirements of the ship’s preliminary design(using the pod excitation and generator sets).Similarly,the vibration response of a scientific research ship under other loading conditions also met the requirements of the code and provided data support for a comprehensive understanding of the ship’s vibration and noise levels.Using actual vibration measurements,the accuracy of the vibration level simulations using finite element modeling was verified,the vibration of each area of the ship comfortably meeting the requirements of the China Classification Society.
基金China Natural Science Foundation (49674220, 49734015) and Open Laboratory Project of Dynamic Geodesy, Chinese Academy of Science
文摘Based on the latest result in research on 3D seismic wave velocity structure of crust and uppermost mantle and taking geological setting and fracture zones into consideration, a 3D geological model for the studied region is built up. The boundary constraint and force loading boundary condition for the model are determined according to the characteristics of crustal stress field deduced from earthquake focal mechanism and in-situ stress measurement data. Using linear elastic material model a 3D finite element modeling is conducted to study the characteristics of crustal stress field. A comparison analysis between the simulated stress field and earthquake locations reveals that the moderate and strong earthquakes generally occurred in the zones with high shear stress gradient. Furthermore, the paper notices a few potential earthquake-prone regions.
文摘The electromagnetic forming is a procedure of high-speed processing,which favors the increase of the formability of some plastically deformed metals.In order to evaluate the capacity of some light metals,such as aluminum and its alloys,to be deformed through this procedure,it is useful to know the stress and strain state that occurs in the material during forming.In this work,the modeling of stresses and strains in electromagnetically deformed AlMn0.5Mg0.5 sheet was made.The modeling was achieved using the finite element method and it was verified through experimental tests.To determine the residual stresses,the X-ray diffraction method was used.The strains were established by measuring the displacements of the nodes in the network inscribed on the specimen by means of three coordinates measuring machine.A good agreement between the modeling results and experimental data was found.
文摘Based on the latest achievement about activities of geological structure, a 3-D finite-element model containing four layers of upper crust, lower crust (two layers) and upper mantle is established in the paper. By repeated tests and revisions, the boundary conditions of the model are determined. And then the background stress field, the stress field caused by fault creep and the stress field triggered by strong earthquake in Sichuan-Yunnan region, as well as their dynamic variations are calculated. The results indicate that the latter earthquake often occurs in the area with positive Coulomb rupture stress change associated with the former one, the former earthquake has a triggering effect on the latter one to a certain extent, and strong earthquake often occur in groups under the background of high stress, which is of great significance for distinguishing seismic anomalies, as well as for improving the level of earthquake prediction.
文摘Precise evaluation of hip fracture risk leads to reduce hip fracture occurrence in individuals and assist to check the effect of a treatment.A subject-specific QCT-based finite element model is introduced to evaluate hip fracture risk using the strain energy,von-Mises stress,and von-Mises strain criteria during the single-leg stance and the sideways fall configurations.Choosing a proper failure criterion in hip fracture risk assessment is very important.The aim of this study is to define hip fracture risk index using the strain energy,von Mises stress,and von Mises strain criteria and compare the calculated fracture risk indices using these criteria at the critical regions of the femur.It is found that based on these criteria,the hip fracture risk at the femoral neck and the intertrochanteric region is higher than other parts of the femur,probably due to the larger amount of cancellous bone in these regions.The study results also show that the strain energy criterion gives more reasonable assessment of hip fracture risk based on the bone failure mechanism and the von-Mises strain criterion is more conservative than two other criteria and leads to higher estimate of hip fracture risk indices.
基金The project supported by the National Natural Science Foundation of China (10272037)The English text was polished by Yunming Chen.
文摘Advanced fiber reinforced polymer composites have been increasingly applied to various structural components. One of the important processes to fabricate high performance laminated composites is an autoclave assisted prepreg lay-up. Since the quality of laminated composites is largely affected by the cure cycle, selection of an appropriate cure cycle for each application is important and must be optimized. Thus, some fundamental model of the consolidation and cure processes is necessary for selecting suitable parameters for a specific application. This article is concerned with the "flow-compaction" model during the autoclave processing of composite materials. By using a weighted residual method, two-dimensional finite element formulation for the consolidation process of thick thermosetting composites is presented and the corresponding finite element code is developed. Numerical examples, including comparison of the present numerical results with one-dimensional and twodimensional analytical solutions, are given to illustrate the accuracy and effectiveness of the proposed finite element formulation. In addition, a consolidation simulation of AS4/3501-6 graphite/epoxy laminate is carded out and compared with the experimental results available in the literature.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774071)the National Basic Research Prgram 973 (Grant No. 2010CB732600)from Ministry of Science and Technology,China+1 种基金the Natural Science Foundation of Jiangsu Province,China (Grant No. BK2007518)the State Key Laboratory of Acoustics (Grant No. 200902)
文摘This article proposes a finite element model (FEM) for predicting the acoustic scattering from an encapsulated microbubble near rigid boundary. The validity of the model is first examined by comparing the acoustic nonlinear response of a free microbubble with that obtained by the Church model. Then this model is used to investigate the effect of the rigid boundary on acoustic scattering signals from microbubble. The results indicate that the resonance frequency decreases while the oscillation amplitude increases as the microbubble approaches the rigid boundary. In addition, the fundamental component of the acoustic scattering signal is enhanced compared with that of the free microbubble.
基金Sponsored by the National Key Laboratory of Science and Technology on Helicopter Transmission,Nanjing University of Aeronautics and Astronautics(Grant No.HTL-O-19G08).
文摘To study the overall vibration characteristics of the sprag clutch⁃flexible rotor system(SC⁃FRS)under high⁃speed operating conditions,a finite element model of SC⁃FRS considering rotor flexibility and bearing support stiffness was established based on the proposed calculation method of the stiffness matrix.According to this model,the natural frequency and mode shape of the system are calculated,and the correctness of the model was verified by comparing it with the calculation results of ANSYS software.Under the action of unbalance,the bending⁃torsion coupled vibration and the dynamic load of the inter⁃shaft bearings were analyzed,and it is found that the resonant peak in the torsional direction has the same resonance frequency as that in the bending direction.A test rig for the sprag clutch⁃rotor system was built,and the axis trajectory and critical speed were tested.The test results show that the finite element model of SC⁃FRS can accurately describe the vibration characteristics of the system.The coupling vibration characteristics analysis of the sprag clutch⁃flexible rotor system can provide theoretical guidance for the dynamic design of the sprag clutch components.
基金ThisprojectwassponsoredbytheNationalKeyBasicResearchProgram (G19980 4 0 7) China .
文摘Based on research result concerning the preparation and activity of strong earthquakes in groups and using the finite element method, a finite element dynamic model for Southwest China is established in this paper. Using this model, the stress adjustment in the whole of the Southwest China region in response to the stress change due to strong earthquake occurrence is studied. The preliminary result shows that many strong earthquakes occurred in areas where the stress heightened after the last strong earthquake. So, the finite element model set up in this paper is useful for judging the regions where strong earthquakes are likely to occur in future.
基金This work was financially supported by the Swedish Science Council(Vetenskapsradet)under grant number 2019-04156by the Swedish Foundation for Strategic Research(SSF,Stiftelsen for Strategisk Forskning)under grant number ID17-0078,as well as in the SUNRISE center with financial support from SSF under Grant No.ARC19-0043.
文摘The temperature-dependent effective thermal conductivity of UN-X-UO_(2)(X=Mo,W)nuclear fuel composite was estimated.Following the experimental design,the thermal conductivity was calculated using Finite Element Modeling(FEM),and compared with analytical models for 10%,30%,50%,and 70%(in mass)uncoated/coated UN microspheres in a UO2 matrix.The FEM results show an increase in the fuel thermal conductivity as the mass fraction of the UN microspheres increases from 1.2 to 4.6 times the UO2 reference at 2,000 K.The results from analytical models agree with the thermal conductivity estimated by FEM.The results also show that Mo and W coatings have similar thermal behaviors,and the coating thickness influences the thermal conductivity of the composite.At higher weight fractions,the thermal conductivity of the fuel composite at room temperature is substantially influenced by the high thermal conductivity coatings approaching that of UN.Thereafter,the thermal conductivity from FEM was used in the fuel thermal performance evaluation during LWR normal operation to calculate the maximum centerline temperature.The results show a significant decrease in the fuel maximum centerline temperature ranging from−94 K for 10% UN to−414 K for 70%(in mass)UN compared to UO2 under the same operating conditions.
基金This work was supported by Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-YB-269)the National Natural Science Foundation of China(Grant No.41974122).
文摘The large storage requirement is a critical issue in cross-correlation imaging-condition based reverse time migration(RTM),because it requires the operation of the source and receiver wavefields at the same time.The boundary value method(BVM),based on the finite difference method(FDM),can be used to reconstruct the source wavefield in the reverse time propagation in the same way as the receiver wavefield,which can reduce the storage burden of the RTM data.Considering that the FDM cannot well handle models with discontinuous material properties and rough interfaces,we develop a source wavefield reconstruction strategy based on the finite element method(FEM),using proper orthogonal decomposition(POD)to enhance computational efficiency.In this method,we divide the whole time period into several segments,and construct the POD basis functions to get a reduced order model(ROM)for the source wavefield reconstruction in each segment.We show the corresponding quantitative analysis of the storage requirement of the POD-FEM.Numerical tests on the homogeneous model show the effectiveness of the proposed method,while the layered model and part of the Marmousi model tests indicate that the POD-FEM can keep an excellent balance between computational efficiency and memory usage compared with the full-stored method(FSM)and the BVM,and can be effectively applied in imaging.
基金financially supported by the National Natural Science Foundation of China(Nos.51071122 and51271147)
文摘The consolidation process of SiC<sub>f</sub>/Ti-6Al-4V composites by matrix-coated fiber (MCF) method via hot pressing was investigated using finite element modeling (FEM). By analyzing the elastic–plastic contact deformation of the representative aligned coated fibers, the consolidation maps delineating the time–temperature–pressure relationship for full densification were constructed. Both the flow coefficient and the contact area coefficient used to describe the contact deformation were calculated according to the model. In addition, the effect of fiber content on matrix stress distribution was analyzed. The results show that fiber content is a significant factor that influences the densification process. Higher fiber content will lower the consolidation rate.
基金supported by Supported by the Science and Technology Research Program of the Institute of Mountain Hazards and Environment,CAS(IMHE-ZDRW-01)the National Natural Science Foundation of China,China(Grant Numbers:42077275&42271086)the Special Project of Basic Research-Key Project,Yunnan(Grant Number:202301AS070039).
文摘The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement concrete facing panels,and gravity-type earth-retaining walls.The finite element(FE)simulations utilized a 3D plane strain condition to model full-scale ER walls and numerous nonlinear dynamics analyses.The seismic performance of differentmodels,which includes reinforcement concrete panels and gravity-type and hollowprecast concrete ER walls,was simulated and examined using the FE approach.It also displays comparative studies such as stress distribution,deflection of the wall,acceleration across the wall height,lateral wall displacement,lateral wall pressure,and backfill plastic strain.Three components of the created ER walls were found throughout this research procedure.One is a granular reinforcement backfill,while the other is a wall-facing panel and base foundation.The dynamic response effects of varied earth-retaining walls have also been studied.It was discovered that the facing panel of the model significantly impacts the earthquake-induced displacement of ER walls.The proposed analytical model’s validity has been evaluated and compared with the reinforcement concrete facing panels,gravity-type ER wall,scientifically available data,and American Association of State Highway and Transportation Officials(AASHTO)guidelines results based on FE simulation.The results of the observations indicate that the hollow prefabricated concrete ER wall is the most feasible option due to its lower displacement and high-stress distribution compared to the two types.The methodology and results of this study establish standards for future analogous investigations and professionals,particularly in light of the increasing computational capabilities of desktop computers.
基金supported by National Natural Science Foundation of China(Grant Nos.40474039,41030320)Chinese Academy of Sciences(Grant No.XDB030105)
文摘The Tianshan Mountains,located in the northwestern China,are bounded by the Tarim Basin to south and the Junggar Basin to north.In the north piedmont of this mountain range,ongoing thrusting and folding forms a set of roughly parallel anticlines.Geological observations predicted that averaged over last^1 Ma time scale,the shortening rates of these anticlines are about2.1–5.5 mm/a;However by averaged over about 10±2 kyr,their shortening rates reduce to merely about 1.25±0.5 mm/a.The slow shortening of the anticlines in the last^10±2 kyr is coarsely concurrent in time with the last global deglaciation.Here,we use a two-dimensional finite element model to explore crustal deformation across north piedmont of the Tianshan Mountains under various erosion-sedimentation conditions that are assumed to represent the climate-controlled surface process.Numerical experiments show that with a relatively weak erosion-sedimentation strength,the crustal shortening is accommodated mainly by north piedmont of the Tianshan Mountains,similar to the high shortening rate of anticlines averaged over the last^1Ma.By increasing erosion-sedimentation strength,the resultant crustal shortening is transformed gradually toward the Tianshan Mountains,resulting in the shortening rate in its north piedmont being decelerated to what is observed as averaged over the last^10±2 kyr.This result suggests that erosion and sedimentation could play an important role mechanically on strain localization across an intra-continent active tectonic belt.Hence,if the climate change around the last global deglaciation could be simply representative to the enhancement of surface erosion and sedimentation across the pre-existed Tianshan Mountains and its foreland,our models indicate that the observed shortening-rate variations averaged over^1 Ma and^10±2kyr time scales around north piedmont of the Tianshan Mountains should be resulted from climate changes.