期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
A Study on the Computer Numerical Simulation of Radial Keratotomy by Finite Element Method
1
《Chinese Journal of Biomedical Engineering(English Edition)》 1999年第4期120-121,共2页
关键词 simulation A Study on the Computer Numerical simulation of Radial Keratotomy by finite element method
下载PDF
Radiation heat transfer model for complex superalloy turbine blade in directional solidification process based on finite element method 被引量:4
2
作者 Dun-ming Liao Liu Cao +4 位作者 Tao Chen Fei Sun Yong-zhen Jia Zi-hao Teng Yu-long Tang 《China Foundry》 SCIE 2016年第2期123-132,共10页
For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo... For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process. 展开更多
关键词 directional solidification radiation heat transfer finite element method numerical simulation local matrix superalloy turbine blade
下载PDF
Simulation of bulk metal forming processes using one-step finite element approach based on deformation theory of plasticity 被引量:2
3
作者 王鹏 董湘怀 傅立军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第2期276-282,共7页
The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/stra... The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method. 展开更多
关键词 bulk metal forming plastic deformation theory finite element method one-step forward simulation rigid-plastic materials
下载PDF
Study on visualization simulation of temperature distributions in surrounding rock of tunnels in a deep mine 被引量:1
4
作者 孙培德 《Journal of Coal Science & Engineering(China)》 2006年第2期57-61,共5页
Based on the mathematical model for rock temperature distribution in a geo-thermal field,the properties of rock temperature distribution in geothermal field for fourkinds of surrounding rock cross-sections of tunnels ... Based on the mathematical model for rock temperature distribution in a geo-thermal field,the properties of rock temperature distribution in geothermal field for fourkinds of surrounding rock cross-sections of tunnels in a deep mine were simulated by us-ing finite element method.It is shown that the relationship for rock temperature distributionvaried with the geothermal parameters,time and space.Namely, 2-dimensionaltime-dependent isograms clearly showed the process for rock temperature variation anddistribution in a geothermal field which has been redisplayed with visualization numericalsimulation. 展开更多
关键词 deep mine geothermal field temperature distribution visualization simulation finite element method
下载PDF
Numerical simulation of influences of the earth medium's lateral heterogeneity on co- and post-seismic deformation 被引量:3
5
作者 Xu Bei Xu Caijun 《Geodesy and Geodynamics》 2015年第1期46-54,共9页
Many studies revealed that the Earth medium's lateral heterogeneity can cause considerable effects on the co- and post-seismic deformation field. In this study, the threedimensional finite element numerical method ar... Many studies revealed that the Earth medium's lateral heterogeneity can cause considerable effects on the co- and post-seismic deformation field. In this study, the threedimensional finite element numerical method are adopted to quantify the effects of lateral heterogeneity caused by material parameters and fault dip angle on the co- and postseismic deformation in the near- and far-field. Our results show that: 1) the medium's lateral heterogeneity does affect the co-seismic deformation, with the effects increasing with the medium's lateral heterogeneity caused by material parameters; 2) the Lame parameters play a more dominant role than density in the effects caused by lateral heterogeneity; 3) when a fault's dip angle is smaller than 90, the effects of the medium's lateral heterogeneity on the hanging wall are greater than on the footwall; 4) the impact of lateral heterogeneity caused by the viscosity coefficient on the post-seismic deformation can affect a large area, including the near- and far-field. 展开更多
关键词 finite element method Medium s lateral heterogeneity Numerical simulation Co-seismic deformation Post-seismic deformation Geod
下载PDF
MATERIAL SURFACE THERMAL PROPERTY IDENTIFICATION USING HEAT FLUX TACTILE SENSOR
6
作者 吴剑锋 毛志鹏 +2 位作者 李建清 周连杰 蔡凤 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期84-89,共6页
Eased on the mechanism of temperature tactile sensing of human finger,a heat flux tactile sensor com- posed of a thermostat module and a heat flux sensor is designed to identify material thermal properties. The ther- ... Eased on the mechanism of temperature tactile sensing of human finger,a heat flux tactile sensor com- posed of a thermostat module and a heat flux sensor is designed to identify material thermal properties. The ther- mostat module maintains the sensor temperature invariable, and the heat flux sensor(Peltier device) detects the heat flux temperature difference between the thermostat module and the object surface. Two different modes of the heat flux tactile sensor are proposed, and they are simulated and experimented for different material objects. The results indicate that the heat flux tactile sensor can effectively identify different thermal properties. 展开更多
关键词 heat flux tactile sensor heat flux material identification Peltier device ANSYS finite element method(FEM) simulation
下载PDF
Influence of process parameters on the microstructural evolution of a rear axle tube during cross wedge rolling 被引量:3
7
作者 Jia-wei Ma Cui-ping Yang +2 位作者 Zhen-hua Zheng Kang-sheng Zhang Wen-yu Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第11期1302-1314,共13页
In the shaping process of cross wedge rolling(CWR), metal undergoes a complex microstructural evolution, which affects the quality and mechanical properties of the product. Through secondary development of the DEFOR... In the shaping process of cross wedge rolling(CWR), metal undergoes a complex microstructural evolution, which affects the quality and mechanical properties of the product. Through secondary development of the DEFORM-3D software, we developed a rigid plastic finite element model for a CWR-processed rear axle tube, coupled with thermomechanical and microstructural aspects of workpieces. Using the developed model, we investigated the microstructural evolution of the CWR process. Also, the influence of numerous parameters, including the initial temperature of workpieces, the roll speed, the forming angle, and the spreading angle, on the grain size and the grain-size uniformity of the rolled workpieces was analyzed. The numerical simulation was verified through rolling and metallographic experiments. Good agreement was obtained between the calculated and experimental results, which demonstrated the reliability of the model constructed in this work. 展开更多
关键词 microstructural evolution grain size cross wedge rolling finite element method computer simulation tubes
下载PDF
Electromagnetic design and dynamic analysis of large turbo-generator 被引量:2
8
作者 WANG Yi-xuan WANG Ying +1 位作者 LIU Xin QIU Hai-fei 《Journal of Energy and Power Engineering》 2009年第12期19-28,共10页
Through a great deal calculation, the design and simulation analysis of stator parametric and rotor electromagnetic system of 1000MW turbo-generator are performed by using Ansoft Maxwell Rmxprt12.1 software. Besides. ... Through a great deal calculation, the design and simulation analysis of stator parametric and rotor electromagnetic system of 1000MW turbo-generator are performed by using Ansoft Maxwell Rmxprt12.1 software. Besides. the basic parameters of the generator, the geometry dimensions of the stator and rotor, type and sizes of the slots, coils and windings parameters and the way of windings connection are determined. The finite element model of electromagnetic systems of generator stator and rotor was constructed by Ansoft Maxwe112D3D 12.1, and the transient electromagnetic characteristics of generator was analyzed and simulated. The 3D geometric models of turbo-generator were established respectively by using PROE software, and the dynamic finite element model of generator structure was built by ANSYS workbench 11.0. In addition, the dynamic characteristics of stator iron core, stator frame were calculated respectively. The simulation calculation has shown that the structural parameters, material parameters, and the electromagnetic characteristics parameters for large turbogenerator that are put forward by this paper should be optimal. and the design plan and method suggested by this paper should be feasible. The paper provides an effective solution for the development of larger turbo-generator than 1000 MW. 展开更多
关键词 large turbo-generator electromagnetic design finite element method dynamic simulation optimization design
下载PDF
Numerical modeling of thermally-induced fractures in a large rock salt mass
9
作者 D.T. Ngo FL. Pellet 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期844-855,共12页
Numerical modeling of thermally-induced fractures is a concern for many geo-structures including deep underground energy storage caverns. In this paper, we present the numerical simulation of a large-scale cooling exp... Numerical modeling of thermally-induced fractures is a concern for many geo-structures including deep underground energy storage caverns. In this paper, we present the numerical simulation of a large-scale cooling experiment performed in an underground rock salt mine. The theory of fracture mechanics was embedded in the extended finite element code used. The results provide reliable information on fracture location and fracture geometry. Moreover, the timing of the fracture onset, as well as the stress redis- tribution due to fracture propagation, is highlighted. The conclusions of this numerical approach can be used to improve the design of rock salt caverns in order to guarantee their integrity in terms of both their tightness and stability. 展开更多
关键词 Fracture mechanics Thermal loading Extended finite element method (XFEM)simulation Rock salt
下载PDF
Surface micro/nanostructure evolution of Au-Ag alloy nanoplates: Synthesis, simulation, plasmonic photothermal and surface-enhanced Raman scattering applications 被引量:6
10
作者 Hongmei Qian Meng Xu +7 位作者 Xiaowei Li Muwei Ji Lei Cheng Anwer Shoaib Jiajia Liu Lan Jiang Hesun Zhu Jiatao Zhang 《Nano Research》 SCIE EI CAS CSCD 2016年第3期876-885,共10页
This study reports the controllable surface roughening of Au-Ag alloy nanoplates via the galvanic replacement reaction between single-crystalline triangular Ag nanoplates and HAuC14 in an aqueous medium. With a combin... This study reports the controllable surface roughening of Au-Ag alloy nanoplates via the galvanic replacement reaction between single-crystalline triangular Ag nanoplates and HAuC14 in an aqueous medium. With a combination of experimental evidence and finite element method (FEM) simulations, improved electromagnetic field (E-field) enhancement around the surface-roughened Au- Ag nanoplates and tunable light absorption in the near-infrared (NIR) region (-800-1,400 nm) are achieved by the synergistic effects of the localized surface plasmon resonance (LSPR) from the maintained triangular shape, the controllable Au-Ag alloy composition, and the increased surface roughness. The NIR light extinction enables an active photothermal effect as well as a high photothermal conversion efficiency (78.5%). The well-maintained triangular shape, surface- roughened evolutions of both micro- and nanostructures, and tunable NIR surface plasmon resonance effect enable potential applications of the Au-Ag alloy nanoplates in surface-enhanced Raman spectroscopic detection of biomolecules through 785-nm laser excitation. 展开更多
关键词 Au-Ag alloy nanoplates surface roughening finite element method(FEM) simulation PHOTOTHERMAL surface enhanced Ramanscattering (SERS)
原文传递
Experiment and Simulation for Rolling of Diamond–Cu Composites 被引量:1
11
作者 Yun-Long Wang Kai-Kun Wang +1 位作者 Yu-Wei Wang Guang-Chen Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第8期791-800,共10页
We demonstrate an innovative preparation approach of diamond/Cu composites by powder-in-tube technique and rolling. A small copper tube was loaded with Ti- and Cu-coated diamond particles, mad then the diamond particl... We demonstrate an innovative preparation approach of diamond/Cu composites by powder-in-tube technique and rolling. A small copper tube was loaded with Ti- and Cu-coated diamond particles, mad then the diamond particles were combined with Cu matrix by composite rolling. The morphology and element distribution of the interface between diamond and Cu were determined by scanning electron microscopy and energy-dispersive spectrometer. Finite element method (FEM) simulation was used to analyze the rolling process associated with experiment by DEFORM-3D. The final experimental results showed that homogeneous distribution of diamond particles could be observed in the center layer of the composites. According to the contrast experiments, the sample, whose diamond particle size is 0.12-0.15 mm and thickness of pre-rolling is 1.2 mm, showed relatively complete morphologies and homogeneous distribution. Experimental results indicated a poor efficacy of excessive rolling reduction. The thermal conductivity of the composites is about 453 W (m K)-1 by theoretical calculation. For FEM simulation, roiling strain and temperature field of the composites were simulated by DEFORM-3D. Simulation results were interpreted, and numerical results verified the reliability of the model. The simulation predicted that the local area of large strain, indicative of the strain along the thickness direction, could be intensified by adding diamond particles. 展开更多
关键词 Diamond/Cu composites Powder-in-tube technique (PIT) ROLLING finite element method(FEM) simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部