期刊文献+
共找到2,156篇文章
< 1 2 108 >
每页显示 20 50 100
IMPLICIT-EXPLICIT MULTISTEP FINITE ELEMENT-MIXED FINITE ELEMENT METHODS FOR THE TRANSIENT BEHAVIOR OF A SEMICONDUCTOR DEVICE
1
作者 陈蔚 《Acta Mathematica Scientia》 SCIE CSCD 2003年第3期386-398,共13页
The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density. The electric potential equ... The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density. The electric potential equation is discretized by a mixed finite element method. The electron and hole density equations are treated by implicit-explicit multistep finite element methods. The schemes are very efficient. The optimal order error estimates both in time and space are derived. 展开更多
关键词 Semiconductor device strongly A(0)-stable multistep methods finite element methods mixed finite element methods
下载PDF
Immersed Interface Finite Element Methods for Elasticity Interface Problems with Non-Homogeneous Jump Conditions 被引量:3
2
作者 Yan Gong Zhilin Li 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第1期23-39,共17页
In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body... In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence. 展开更多
关键词 Immersed interface finite element methods elasticity interface problems singularity removal homogeneous and non-homogeneous jump conditions level-set function.
下载PDF
Electrode Design of Cylindrical Coplanar-grid CdZnTe Detector by Finite Element Methods 被引量:1
3
作者 JINWei SANGWen-bin ZHANGQi MINJia-Hua SHENYan 《Semiconductor Photonics and Technology》 CAS 2004年第1期48-52,共5页
Cylindrical coplanar-grid configurations,which offer a lot of advantages over established designs,can effectively overcome the problem of poor hole collection.Finite element analysis is utilized for simulating the pot... Cylindrical coplanar-grid configurations,which offer a lot of advantages over established designs,can effectively overcome the problem of poor hole collection.Finite element analysis is utilized for simulating the potential distribution of the cylindrical coplanar-grid detector under different models by varying the widths of grid and pitch of electrodes. In addition, a modified grid pattern has been discussed to improve the weighting potential match between two grids. In this way, the geometry of electrodes for cylindrical coplanar-grid detectors is optimized. 展开更多
关键词 CDZNTE finite element methods Coplanar-grid DETECTOR
下载PDF
THE COUPLING OF BOUNDARY ELEMENT AND FINITE ELEMENT METHODS FOR THE EXTERIOR NONSTATIONARY NAVIER-STOKES EQUATIONS 被引量:2
4
作者 何银年 李开泰 《Acta Mathematica Scientia》 SCIE CSCD 1991年第2期190-207,共18页
In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variat... In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variational formulation and well posedness of the coupling method are obtained. The convergence and optimal estimates for the approximation solution are provided. 展开更多
关键词 THE COUPLING OF BOUNDARY element AND finite element methods FOR THE EXTERIOR NONSTATIONARY NAVIER-STOKES EQUATIONS
下载PDF
ASYMPTOTICAL STABILITY OF NEUTRAL REACTION-DIFFUSION EQUATIONS WITH PCAS AND THEIR FINITE ELEMENT METHODS
5
作者 韩豪 张诚坚 《Acta Mathematica Scientia》 SCIE CSCD 2023年第4期1865-1880,共16页
This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their... This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results. 展开更多
关键词 neutral reaction-diffusion equations piecewise continuous arguments asymptotical stability finite element methods numerical experiment
下载PDF
Analysis of Linear Triangular Elements for Convection-diffusion Problems by Streamline Diffusion Finite Element Methods
6
作者 ZHOU Jun-ming JIN Da-yong ZHANG Shu-hua 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第1期43-51,共9页
This paper is devoted to studying the superconvergence of streamline diffusion finite element methods for convection-diffusion problems. In [8], under the condition that ε ≤ h^2 the optimal finite element error esti... This paper is devoted to studying the superconvergence of streamline diffusion finite element methods for convection-diffusion problems. In [8], under the condition that ε ≤ h^2 the optimal finite element error estimate was obtained in L^2-norm. In the present paper, however, the same error estimate result is gained under the weaker condition that ε≤h. 展开更多
关键词 CONVECTION-DIFFUSION streamline diffusion finite element methods linear triangular elements SUPERCONVERGENCE
下载PDF
Continuous finite element methods for Hamiltonian systems
7
作者 汤琼 陈传淼 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第8期1071-1080,共10页
By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved hav... By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudo- symplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agree-ment with theory. 展开更多
关键词 Hamiltonian systems continuous finite element methods pseudo-symplectic energy conservation
下载PDF
A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear,Dispersive Equations
8
作者 Ohannes A.Karakashian Michael M.Wise 《Communications on Applied Mathematics and Computation》 2022年第3期823-854,共32页
The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite ... The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators. 展开更多
关键词 finite element methods Discontinuous Galerkin methods Korteweg-de Vries equation A posteriori error estimates Conservation laws Nonlinear equations Dispersive equations
下载PDF
THE ANALYTICAL SOLUTIONS BASED ON THE CONCEPT OF FINITE ELEMENT METHODS
9
作者 隋允康 郭田福 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第4期321-331,共11页
On the basis of the concept of finite element methods, the rigorous analytical solutions of structural response in terms of the design variables are researched in this paper. The spatial trusses are taken as an exampl... On the basis of the concept of finite element methods, the rigorous analytical solutions of structural response in terms of the design variables are researched in this paper. The spatial trusses are taken as an example for the solution of the analytical expressions of the explicit displacements which are proved mathematically; then some conclusions are reached that are useful to structural sensitivity analysis and optimization. In the third part of the paper, a generalized geometric programming method is sugguested for the optimal model with the explicit displacement. Finally, the analytical solutions of the displacements of three trusses are given as examples. 展开更多
关键词 THE ANALYTICAL SOLUTIONS BASED ON THE CONCEPT OF finite element methods
下载PDF
A Posteriori Error Estimate of Two Grid Mixed Finite Element Methods for Semilinear Elliptic Equations
10
作者 Yiming Wen Luoping Chen Jiajia Dai 《Journal of Applied Mathematics and Physics》 2023年第2期361-376,共16页
In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the m... In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the mixed method equations. Then, the averaging technique is used to construct the a posteriori error estimates of the two-grid mixed finite element method and theoretical analysis are given for the error estimators. Finally, we give some numerical examples to verify the reliability and efficiency of the a posteriori error estimator. 展开更多
关键词 Two-Grid Mixed finite element methods Posteriori Error Estimates Semilinear Elliptic Equations Averaging Technique
下载PDF
Investigation on mechanism of magnetization reversal for nanocrystalline Pr-Fe-B permanent magnets by micromagnetic finite element methods 被引量:4
11
作者 郑波 赵素芬 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第1期145-149,共5页
Magnetization configurations were calculated under various magnetic fields for nanocrystalline Pr-Fe-B permanent magnets by micromagnetic finite element method.According to the configurations during demagnetization pr... Magnetization configurations were calculated under various magnetic fields for nanocrystalline Pr-Fe-B permanent magnets by micromagnetic finite element method.According to the configurations during demagnetization process, the mechanism of magnetization reversal was analyzed.For the Pr2Fe14B with 10 nm grains or its composite with 10vol.% α-Fe, the coercivity was determined by nucleation of reversed domain that took place at grain boundaries.However, for Pr2Fe14B with 30 nm grains, coercivity was controlled by pinning of the nucle-ated domain.For Pr2Fe14B/α-Fe with 30vol.% α-Fe, the demagnetization behavior was characterized by continuous reversal of α-Fe moment. 展开更多
关键词 nanocrystalline permanent magnets COERCIVITY MICROMAGNETICS finite element method rare earths
下载PDF
The Efficient Finite Element Methods for Time-Fractional Oldroyd-B Fluid Model Involving Two Caputo Derivatives 被引量:2
12
作者 An Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期173-195,共23页
In this paper,we consider the numerical schemes for a timefractionalOldroyd-B fluidmodel involving the Caputo derivative.We propose two efficient finite element methods by applying the convolution quadrature in time g... In this paper,we consider the numerical schemes for a timefractionalOldroyd-B fluidmodel involving the Caputo derivative.We propose two efficient finite element methods by applying the convolution quadrature in time generated by the backward Euler and the second-order backward difference methods.Error estimates in terms of data regularity are established for both the semidiscrete and fully discrete schemes.Numerical examples for two-dimensional problems further confirmthe robustness of the schemes with first-and second-order accurate in time. 展开更多
关键词 Oldroyd-B fluid model caputo derivative finite element method convolution quadrature error estimate data regularity
下载PDF
TWO-LEVEL MULTISCALE FINITE ELEMENT METHODS FOR THE STEADY NAVIER-STOKES PROBLEM 被引量:2
13
作者 文娟 何银年 +1 位作者 王学敏 霍米会 《Acta Mathematica Scientia》 SCIE CSCD 2014年第3期960-972,共13页
In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique ... In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique is first to use a standard finite element discretization on a coarse mesh to approximate low frequencies, then to apply the simple and Newton scheme to linearize discretizations on a fine grid. At this process, multiscale finite element method as a stabilized method deals with the lowest equal-order finite element pairs not satisfying the inf-sup condition. Under the uniqueness condition, error analyses for both algorithms are given. Numerical results are reported to demonstrate the effectiveness of the simple and Newton scheme. 展开更多
关键词 Multiscale finite element method two-level method error analysis the Navier- Stokes problem
下载PDF
EXPANDABLE PARALLEL FINITE ELEMENT METHODS FOR LINEAR ELLIPTIC PROBLEMS 被引量:1
14
作者 Guangzhi DU 《Acta Mathematica Scientia》 SCIE CSCD 2020年第2期572-588,共17页
In this article,two kinds of expandable parallel finite element methods,based on two-grid discretizations,are given to solve the linear elliptic problems.Compared with the classical local and parallel finite element m... In this article,two kinds of expandable parallel finite element methods,based on two-grid discretizations,are given to solve the linear elliptic problems.Compared with the classical local and parallel finite element methods,there are two attractive features of the methods shown in this article:1)a partition of unity is used to generate a series of local and independent subproblems to guarantee the final approximation globally continuous;2)the computational domain of each local subproblem is contained in a ball with radius of O(H)(H is the coarse mesh parameter),which means methods in this article are more suitable for parallel computing in a large parallel computer system.Some a priori error estimation are obtained and optimal error bounds in both H^1-normal and L^2-normal are derived.Finally,numerical results are reported to test and verify the feasibility and validity of our methods. 展开更多
关键词 Two-grid method expandable method partition of unity parallel algorithm finite element method
下载PDF
Analysis of regular and chaotic dynamics of the Euler-Bernoulli beams using finite difference and finite element methods 被引量:3
15
作者 J.Awrejcewicz A.V.Krysko +2 位作者 J.Mrozowski O.A.Saltykova M.V.Zhigalov 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第1期36-43,共8页
Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained result... Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained results is verified by the finite difference method(FDM)and the finite element method(FEM)with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes(regular and non-regular).The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly,dynamic behavior vs.control parameters { ωp,q0 } is reported,and scenarios of the system transition into chaos are illustrated. 展开更多
关键词 Euler-Bernoulli beams · Chaos · finite differ-ence method · finite element method
下载PDF
CONTINUOUS FINITE ELEMENT METHODS FOR REISSNER-MINDLIN PLATE PROBLEM
16
作者 段火元 马俊华 《Acta Mathematica Scientia》 SCIE CSCD 2018年第2期450-470,共21页
On triangle or quadrilateral meshes, two finite element methods are proposed for solving the Reissner-Mindlin plate problem either by augmenting the Galerkin formulation or modifying the plate-thickness. In these meth... On triangle or quadrilateral meshes, two finite element methods are proposed for solving the Reissner-Mindlin plate problem either by augmenting the Galerkin formulation or modifying the plate-thickness. In these methods, the transverse displacement is approximated by conforming (bi)linear macroelements or (bi)quadratic elements, and the rotation by conforming (bi)linear elements. The shear stress can be locally computed from transverse displacement and rotation. Uniform in plate thickness, optimal error bounds are obtained for the transverse displacement, rotation, and shear stress in their natural norms. Numerical results are presented to illustrate the theoretical results. 展开更多
关键词 Reissner-Mindlin plate continuous element triangle element quadrilateralelement finite element method uniform convergence
下载PDF
MIXED FINITE ELEMENT METHODS FOR THE SHALLOW WATER EQUATIONS INCLUDING CURRENT AND SILT SEDIMENTATION (Ⅱ)——THE DISCRETE-TIME CASE ALONG CHARACTERISTICS
17
作者 罗振东 朱江 +1 位作者 曾庆存 谢正辉 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第2期186-201,共16页
The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE s... The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated. 展开更多
关键词 mixed finite element method shallow water equation error estimate current and silt sedimentation characteristics method
下载PDF
Bubble-Enriched Smoothed Finite Element Methods for Nearly-Incompressible Solids
18
作者 Changkye Lee Sundararajan Natarajan +3 位作者 Jack S.Hale Zeike A.Taylor Jurng-Jae Yee Stephane P.A.Bordas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第5期411-436,共26页
This work presents a locking-free smoothed finite element method(S-FEM)for the simulation of soft matter modelled by the equations of quasi-incompressible hyperelasticity.The proposed method overcomes well-known issue... This work presents a locking-free smoothed finite element method(S-FEM)for the simulation of soft matter modelled by the equations of quasi-incompressible hyperelasticity.The proposed method overcomes well-known issues of standard finite element methods(FEM)in the incompressible limit:the over-estimation of stiffness and sensitivity to severely distorted meshes.The concepts of cell-based,edge-based and node-based S-FEMs are extended in this paper to three-dimensions.Additionally,a cubic bubble function is utilized to improve accuracy and stability.For the bubble function,an additional displacement degree of freedom is added at the centroid of the element.Several numerical studies are performed demonstrating the stability and validity of the proposed approach.The obtained results are compared with standard FEM and with analytical solutions to show the effectiveness of the method. 展开更多
关键词 Strain smoothing smoothed finite element method bubble functions HYPERELASTICITY mesh distortion
下载PDF
Asymptotic Behavior of the Finite Difference and the Finite Element Methods for Parabolic Equations
19
作者 LIU Yang FENG Hui 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第6期953-956,共4页
The asymptotic convergence of the solution of the parabolic equation is proved. By the eigenvalues estimation, we obtain that the approximate solutions by the finite difference method and the finite element method are... The asymptotic convergence of the solution of the parabolic equation is proved. By the eigenvalues estimation, we obtain that the approximate solutions by the finite difference method and the finite element method are asymptotically convergent. Both methods are considered in continnous time. 展开更多
关键词 asymptotic behavior finite difference method finite element method EIGENVALUE
下载PDF
MIXED FINITE ELEMENT METHODS FOR THE SHALLOW WATER EQUATIONS INCLUDING CURRENT AND SILT SEDIMENTA-TION (Ⅰ)-THE CONTINUOUS-TIME CASE
20
作者 罗振东 朱江 +1 位作者 曾庆存 谢正辉 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第1期80-92,共13页
An initial-boundary value problem for shallow equation system consisting of water dynamics equations,silt transport equation, the equation of bottom topography change,and of some boundary and initial conditions is stu... An initial-boundary value problem for shallow equation system consisting of water dynamics equations,silt transport equation, the equation of bottom topography change,and of some boundary and initial conditions is studied, the existence of its generalized solution and semidiscrete mixed finite element(MFE) solution was discussed, and the error estimates of the semidiscrete MFE solution was derived.The error estimates are optimal. 展开更多
关键词 mixed finite element method shallow water equation error estimate current and silt sedimentation
下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部