The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In th...The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...展开更多
The 2018 M_(W)6.7 Iburi earthquake shocked the eastern Iburi region to the west of the Hidaka Collision Zone in Hokkaido,which is a destructive inland earthquake.We resolved the kinematic rupture process of the event ...The 2018 M_(W)6.7 Iburi earthquake shocked the eastern Iburi region to the west of the Hidaka Collision Zone in Hokkaido,which is a destructive inland earthquake.We resolved the kinematic rupture process of the event by combining strong motions(SM)and synthetic aperture radar(SAR)images in a joint inversion.The results reveal that the duration of the whole rupture is about 17s,yielding a total seismic moment of 1.4×10^(19)N·m(M_(W)=6.7).The main slip area is located at a depth of approximately 24 km with a peak slip of~0.8m above the hypocenter.The comparison with the regional velocity model shows the earthquake was initiated in the upper mantle,while the majority of slips are located in the lower crust,which is an“aseismic”domain in the typical sandwich model.The location of the major slip area is consistent with a high-conductivity volume.We proposed a mechanism of low frictional property(<0.3)produced by high pore pressure to explain the abnormal high dip angle and centroid depth located in the ductile lower-crust.Aftershocks are distributed in areas where the Coulomb frictional stress increases due to co-seismic displacement with a mechanism conjugating to the mainshock.展开更多
The Wenchuan Ms8.0 earthquake and the Lushan M7.0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the We...The Wenchuan Ms8.0 earthquake and the Lushan M7.0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the Wenchuan Ms8.0 earthquake, we calculated the coulomb failure stress change. The inverted coulomb stress changes based on the Nishimura and Chenji models both show that the Lushan MT. 0 earth- quake occurred in the increased area of coulomb failure stress induced by the Wenchuan Ms8. 0 earthquake. The coulomb failure stress increased by approximately 0. 135 - 0. 152 bar in the source of the Lushan M7.0 earthquake, which is far more than the stress triggering threshold. Therefore, the Lushan M7.0 earthquake was most likely triggered by the coulomb failure stress change.展开更多
Based on dislocation theory of 0kada, we adopted a finite-element fault model inverted by Gavin Hayes from seismic data for the 2011 Japan Mw9.0 earthquake, and obtained the corresponding surface displacement and stra...Based on dislocation theory of 0kada, we adopted a finite-element fault model inverted by Gavin Hayes from seismic data for the 2011 Japan Mw9.0 earthquake, and obtained the corresponding surface displacement and strain fields. The calculated displacement field is consistent with the observed GPS results in the trend of changes. Also the surface displacement and strain fields both show large variations in space.展开更多
The 2016 A/w7.8 Kaikoura(New Zealand)earthquake was the most complex event ever instrumentally recorded and geologically investigated,as it ruptured on more than 12 fault segments of various geometries.To study the ma...The 2016 A/w7.8 Kaikoura(New Zealand)earthquake was the most complex event ever instrumentally recorded and geologically investigated,as it ruptured on more than 12 fault segments of various geometries.To study the mainshock rupture characteristics,geodetic methods like InSAR and GPS play an essential role in providing satisfactory spatial resolution.However,early strong aftershocks may cause extra ground deformation which bias the mainshock rupture inversion result.In this paper,we will focus on studying the Mw 6.3 aftershock,which is the only A/6+thrust slip aftershock that occurred only 30 minutes after the Kaikoura mainshock.We will relocate the hypocenter of this event using the hypo 2000 method,make the finite fault model(FFM)inversion for the detailed rupture processes and calculate the synthetic surface displacement to compare with the observed GPS data and figure out its influence on the mainshock study.Although we are not able to resolve the real ruptured fault of this event because of limited observation data,we infer that it is a west-ward dipping event of oblique slip mechanism,consistent with the subfault geometries of the Kaikoura mainshock.According to the inverted FFM,this event can generate 10-20 cm ground surface displacement and affect the ground displacement observation at nearby GPS stations.展开更多
On April 20, 2013 at 8:02 am, a magnitude 7.0 earthquake occurred in Lushan County, Sichuan Province, China, which induces massive landslides, causes great losses to life and property. Based on the locations of after...On April 20, 2013 at 8:02 am, a magnitude 7.0 earthquake occurred in Lushan County, Sichuan Province, China, which induces massive landslides, causes great losses to life and property. Based on the locations of aftershocks provided by the China Earthquake Network Center and the characteristic of Longmenshan active faults system, combined with the current preliminary focal mechanism solution, the fault rupture direction is determined. With the finite fault inversion method, we invert the rupture process of the Lusban Ms7.0 earthquake by teleseismic waveforms data. The inversion results indicate that the main shock is dominated by thrust fault component and the rupture initiated at depth of 15 km, and most of slip ruptured around the hypocenter with the peak slip of about 1.5 m. Most of rupture slips released at the first 20 s and the main rupture occurred at the first 10 s after the onsets of the mainshock. Most of seismic energy released near the hypocenter with a length of 28 km, especially on both sides of the hypocenter with the range of 20 km, and the seismic energy released relatively smaller in other areas. There is a large area with weak slip between the main rupture and another two asperities on both sides of the hypocenter; it may imply that the accumulated strain on the rupture fault has not been completely released. Therefore, there is a significant possibility of having strong aftershocks in the areas where energy is not fully released. This is also the main reason why there are a lot of moderate to strong aftershocks in the Lushan aftershock sequence. In addition, there is an earthquake vacant zone with a length of about 50 km between the Wenchuan Mw7.9 earthquake and this event, which is of high earthquake risk and is deserved to be paid close attention to.展开更多
基金Supported by National Natural Science Foundation of China (No. 50778058 and No. 90715038)National Key Technology Research and Development Program of China (No. 2006BAC13B02)Major State Basic Research Development Program of China ("973" Program, No. 2008CB425802)
文摘The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...
基金This work is supported by the National Key R&D Program of China(No.2018YFC1504203)the National Natural Science Foundation of China(No.42021003).
文摘The 2018 M_(W)6.7 Iburi earthquake shocked the eastern Iburi region to the west of the Hidaka Collision Zone in Hokkaido,which is a destructive inland earthquake.We resolved the kinematic rupture process of the event by combining strong motions(SM)and synthetic aperture radar(SAR)images in a joint inversion.The results reveal that the duration of the whole rupture is about 17s,yielding a total seismic moment of 1.4×10^(19)N·m(M_(W)=6.7).The main slip area is located at a depth of approximately 24 km with a peak slip of~0.8m above the hypocenter.The comparison with the regional velocity model shows the earthquake was initiated in the upper mantle,while the majority of slips are located in the lower crust,which is an“aseismic”domain in the typical sandwich model.The location of the major slip area is consistent with a high-conductivity volume.We proposed a mechanism of low frictional property(<0.3)produced by high pore pressure to explain the abnormal high dip angle and centroid depth located in the ductile lower-crust.Aftershocks are distributed in areas where the Coulomb frictional stress increases due to co-seismic displacement with a mechanism conjugating to the mainshock.
基金supported by the Director Foundation of Institute of SeismologyChina Earthquake Administration(201056088)
文摘The Wenchuan Ms8.0 earthquake and the Lushan M7.0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the Wenchuan Ms8.0 earthquake, we calculated the coulomb failure stress change. The inverted coulomb stress changes based on the Nishimura and Chenji models both show that the Lushan MT. 0 earth- quake occurred in the increased area of coulomb failure stress induced by the Wenchuan Ms8. 0 earthquake. The coulomb failure stress increased by approximately 0. 135 - 0. 152 bar in the source of the Lushan M7.0 earthquake, which is far more than the stress triggering threshold. Therefore, the Lushan M7.0 earthquake was most likely triggered by the coulomb failure stress change.
基金supported by the Director Foundation of Institute of Seismology,CEA( IS201056088)
文摘Based on dislocation theory of 0kada, we adopted a finite-element fault model inverted by Gavin Hayes from seismic data for the 2011 Japan Mw9.0 earthquake, and obtained the corresponding surface displacement and strain fields. The calculated displacement field is consistent with the observed GPS results in the trend of changes. Also the surface displacement and strain fields both show large variations in space.
基金the New Zealand GeoNet (http://geonet.org. nz) projectfinancially supported by National Natural Science Foundation of China (Nos. 41590854 and 41461164003)
文摘The 2016 A/w7.8 Kaikoura(New Zealand)earthquake was the most complex event ever instrumentally recorded and geologically investigated,as it ruptured on more than 12 fault segments of various geometries.To study the mainshock rupture characteristics,geodetic methods like InSAR and GPS play an essential role in providing satisfactory spatial resolution.However,early strong aftershocks may cause extra ground deformation which bias the mainshock rupture inversion result.In this paper,we will focus on studying the Mw 6.3 aftershock,which is the only A/6+thrust slip aftershock that occurred only 30 minutes after the Kaikoura mainshock.We will relocate the hypocenter of this event using the hypo 2000 method,make the finite fault model(FFM)inversion for the detailed rupture processes and calculate the synthetic surface displacement to compare with the observed GPS data and figure out its influence on the mainshock study.Although we are not able to resolve the real ruptured fault of this event because of limited observation data,we infer that it is a west-ward dipping event of oblique slip mechanism,consistent with the subfault geometries of the Kaikoura mainshock.According to the inverted FFM,this event can generate 10-20 cm ground surface displacement and affect the ground displacement observation at nearby GPS stations.
基金supported by Chinese Seismic Array Detecting Project (Grant No.201008001)National Natural Science Foundation of China (Grant Nos.41174086,40974034,41021003)
文摘On April 20, 2013 at 8:02 am, a magnitude 7.0 earthquake occurred in Lushan County, Sichuan Province, China, which induces massive landslides, causes great losses to life and property. Based on the locations of aftershocks provided by the China Earthquake Network Center and the characteristic of Longmenshan active faults system, combined with the current preliminary focal mechanism solution, the fault rupture direction is determined. With the finite fault inversion method, we invert the rupture process of the Lusban Ms7.0 earthquake by teleseismic waveforms data. The inversion results indicate that the main shock is dominated by thrust fault component and the rupture initiated at depth of 15 km, and most of slip ruptured around the hypocenter with the peak slip of about 1.5 m. Most of rupture slips released at the first 20 s and the main rupture occurred at the first 10 s after the onsets of the mainshock. Most of seismic energy released near the hypocenter with a length of 28 km, especially on both sides of the hypocenter with the range of 20 km, and the seismic energy released relatively smaller in other areas. There is a large area with weak slip between the main rupture and another two asperities on both sides of the hypocenter; it may imply that the accumulated strain on the rupture fault has not been completely released. Therefore, there is a significant possibility of having strong aftershocks in the areas where energy is not fully released. This is also the main reason why there are a lot of moderate to strong aftershocks in the Lushan aftershock sequence. In addition, there is an earthquake vacant zone with a length of about 50 km between the Wenchuan Mw7.9 earthquake and this event, which is of high earthquake risk and is deserved to be paid close attention to.