期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Hybrid Slip Model for Near-Field Ground Motion Estimation Based on Uncertainty of Source Parameters
1
作者 孙晓丹 陶夏新 +1 位作者 汤爱平 路建波 《Transactions of Tianjin University》 EI CAS 2010年第1期61-67,共7页
The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In th... The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth... 展开更多
关键词 hybrid slip model uncertainty of source parameters optimal finite fault model near-field ground motion estimation
下载PDF
Source rupture model of the 2018 M_(W)6.7 Iburi,Hokkaido earthquake from joint inversion of strong motion and InSAR observations
2
作者 Chunmei Ren Han Yue +1 位作者 Teng Wang Zeyan Zhao 《Earthquake Science》 2021年第1期88-101,共14页
The 2018 M_(W)6.7 Iburi earthquake shocked the eastern Iburi region to the west of the Hidaka Collision Zone in Hokkaido,which is a destructive inland earthquake.We resolved the kinematic rupture process of the event ... The 2018 M_(W)6.7 Iburi earthquake shocked the eastern Iburi region to the west of the Hidaka Collision Zone in Hokkaido,which is a destructive inland earthquake.We resolved the kinematic rupture process of the event by combining strong motions(SM)and synthetic aperture radar(SAR)images in a joint inversion.The results reveal that the duration of the whole rupture is about 17s,yielding a total seismic moment of 1.4×10^(19)N·m(M_(W)=6.7).The main slip area is located at a depth of approximately 24 km with a peak slip of~0.8m above the hypocenter.The comparison with the regional velocity model shows the earthquake was initiated in the upper mantle,while the majority of slips are located in the lower crust,which is an“aseismic”domain in the typical sandwich model.The location of the major slip area is consistent with a high-conductivity volume.We proposed a mechanism of low frictional property(<0.3)produced by high pore pressure to explain the abnormal high dip angle and centroid depth located in the ductile lower-crust.Aftershocks are distributed in areas where the Coulomb frictional stress increases due to co-seismic displacement with a mechanism conjugating to the mainshock. 展开更多
关键词 finite fault model joint inversion steep reversed earthquake
下载PDF
Stress triggering of the Lushan M7. 0 earthquake by the Wenchuan Ms8. 0 earthquake 被引量:3
3
作者 Wu Jianchao Yu Song +2 位作者 Cai Yongjian Lei Dongning Li Heng 《Geodesy and Geodynamics》 2013年第3期35-39,共5页
The Wenchuan Ms8.0 earthquake and the Lushan M7.0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the We... The Wenchuan Ms8.0 earthquake and the Lushan M7.0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the Wenchuan Ms8.0 earthquake, we calculated the coulomb failure stress change. The inverted coulomb stress changes based on the Nishimura and Chenji models both show that the Lushan MT. 0 earth- quake occurred in the increased area of coulomb failure stress induced by the Wenchuan Ms8. 0 earthquake. The coulomb failure stress increased by approximately 0. 135 - 0. 152 bar in the source of the Lushan M7.0 earthquake, which is far more than the stress triggering threshold. Therefore, the Lushan M7.0 earthquake was most likely triggered by the coulomb failure stress change. 展开更多
关键词 focal mechanism finite fault model coulomb failure stress stress triggering threshold
下载PDF
Simulation of surface displacement and strain field of the 2011 Japan Mw9. 0 earthquake 被引量:1
4
作者 Chen Shujun Wu Jianchao +3 位作者 Lei Dongning Cai Yongjian Li Heng Zhang Xinlin 《Geodesy and Geodynamics》 2011年第4期28-32,共5页
Based on dislocation theory of 0kada, we adopted a finite-element fault model inverted by Gavin Hayes from seismic data for the 2011 Japan Mw9.0 earthquake, and obtained the corresponding surface displacement and stra... Based on dislocation theory of 0kada, we adopted a finite-element fault model inverted by Gavin Hayes from seismic data for the 2011 Japan Mw9.0 earthquake, and obtained the corresponding surface displacement and strain fields. The calculated displacement field is consistent with the observed GPS results in the trend of changes. Also the surface displacement and strain fields both show large variations in space. 展开更多
关键词 finite fault model fault dislocation displacement field strain field
下载PDF
Source parameter and rupture process of the M_W6.3 early strong aftershock immediately following the 2016 M_W7.8 Kaikoura earthquake(New Zealand)
5
作者 Qingjun Meng Aizhi Guo +1 位作者 Xiangteng Wang Shuofan Wang 《Earthquake Science》 2019年第1期1-11,共11页
The 2016 A/w7.8 Kaikoura(New Zealand)earthquake was the most complex event ever instrumentally recorded and geologically investigated,as it ruptured on more than 12 fault segments of various geometries.To study the ma... The 2016 A/w7.8 Kaikoura(New Zealand)earthquake was the most complex event ever instrumentally recorded and geologically investigated,as it ruptured on more than 12 fault segments of various geometries.To study the mainshock rupture characteristics,geodetic methods like InSAR and GPS play an essential role in providing satisfactory spatial resolution.However,early strong aftershocks may cause extra ground deformation which bias the mainshock rupture inversion result.In this paper,we will focus on studying the Mw 6.3 aftershock,which is the only A/6+thrust slip aftershock that occurred only 30 minutes after the Kaikoura mainshock.We will relocate the hypocenter of this event using the hypo 2000 method,make the finite fault model(FFM)inversion for the detailed rupture processes and calculate the synthetic surface displacement to compare with the observed GPS data and figure out its influence on the mainshock study.Although we are not able to resolve the real ruptured fault of this event because of limited observation data,we infer that it is a west-ward dipping event of oblique slip mechanism,consistent with the subfault geometries of the Kaikoura mainshock.According to the inverted FFM,this event can generate 10-20 cm ground surface displacement and affect the ground displacement observation at nearby GPS stations. 展开更多
关键词 Kaikoura mainshock AFTERSHOCK finite fault model surface displacement
下载PDF
Rupture process of the M_s 7.0 Lushan earthquake, 2013 被引量:25
6
作者 LIU ChengLi ZHENG Yong +2 位作者 GE Can XIONG Xiong HSU HouTze 《Science China Earth Sciences》 SCIE EI CAS 2013年第7期1187-1192,共6页
On April 20, 2013 at 8:02 am, a magnitude 7.0 earthquake occurred in Lushan County, Sichuan Province, China, which induces massive landslides, causes great losses to life and property. Based on the locations of after... On April 20, 2013 at 8:02 am, a magnitude 7.0 earthquake occurred in Lushan County, Sichuan Province, China, which induces massive landslides, causes great losses to life and property. Based on the locations of aftershocks provided by the China Earthquake Network Center and the characteristic of Longmenshan active faults system, combined with the current preliminary focal mechanism solution, the fault rupture direction is determined. With the finite fault inversion method, we invert the rupture process of the Lusban Ms7.0 earthquake by teleseismic waveforms data. The inversion results indicate that the main shock is dominated by thrust fault component and the rupture initiated at depth of 15 km, and most of slip ruptured around the hypocenter with the peak slip of about 1.5 m. Most of rupture slips released at the first 20 s and the main rupture occurred at the first 10 s after the onsets of the mainshock. Most of seismic energy released near the hypocenter with a length of 28 km, especially on both sides of the hypocenter with the range of 20 km, and the seismic energy released relatively smaller in other areas. There is a large area with weak slip between the main rupture and another two asperities on both sides of the hypocenter; it may imply that the accumulated strain on the rupture fault has not been completely released. Therefore, there is a significant possibility of having strong aftershocks in the areas where energy is not fully released. This is also the main reason why there are a lot of moderate to strong aftershocks in the Lushan aftershock sequence. In addition, there is an earthquake vacant zone with a length of about 50 km between the Wenchuan Mw7.9 earthquake and this event, which is of high earthquake risk and is deserved to be paid close attention to. 展开更多
关键词 Lushan earthquake finite fault model rupture process Longmenshan fault system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部