期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Predicting carbon storage of mixed broadleaf forests based on the finite mixture model incorporating stand factors,site quality,and aridity index
1
作者 Yanlin Wang Dongzhi Wang +2 位作者 Dongyan Zhang Qiang Liu Yongning Li 《Forest Ecosystems》 SCIE CSCD 2024年第3期276-286,共11页
The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,an... The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,and aridity index to predict stand CS in multi-species mixed forests with complex structures.This study used data from70 survey plots for mixed broadleaf Populus davidiana and Betula platyphylla forests in the Mulan Rangeland State Forest,Hebei Province,China,to construct the DDF based on maximum likelihood estimation and finite mixture model(FMM).Ordinary least squares(OLS),linear seemingly unrelated regression(LSUR),and back propagation neural network(BPNN)were used to investigate the influences of stand factors,site quality,and aridity index on the shape and scale parameters of DDF and predicted stand CS of mixed broadleaf forests.The results showed that FMM accurately described the stand-level diameter distribution of the mixed P.davidiana and B.platyphylla forests;whereas the Weibull function constructed by MLE was more accurate in describing species-level diameter distribution.The combined variable of quadratic mean diameter(Dq),stand basal area(BA),and site quality improved the accuracy of the shape parameter models of FMM;the combined variable of Dq,BA,and De Martonne aridity index improved the accuracy of the scale parameter models.Compared to OLS and LSUR,the BPNN had higher accuracy in the re-parameterization process of FMM.OLS,LSUR,and BPNN overestimated the CS of P.davidiana but underestimated the CS of B.platyphylla in the large diameter classes(DBH≥18 cm).BPNN accurately estimated stand-and species-level CS,but it was more suitable for estimating stand-level CS compared to species-level CS,thereby providing a scientific basis for the optimization of stand structure and assessment of carbon sequestration capacity in mixed broadleaf forests. 展开更多
关键词 Weibull function finite mixture model Linear seemingly unrelated regression Back propagation neural network Carbon storage
下载PDF
A Weighted Spatially Constrained Finite Mixture Model for Image Segmentation 被引量:1
2
作者 Mohammad Masroor Ahmed Saleh Al Shehri +3 位作者 Jawad Usman Arshed Mahmood Ul Hassan Muzammil Hussain Mehtab Afzal 《Computers, Materials & Continua》 SCIE EI 2021年第4期171-185,共15页
Spatially Constrained Mixture Model(SCMM)is an image segmentation model that works over the framework of maximum a-posteriori and Markov Random Field(MAP-MRF).It developed its own maximization step to be used within t... Spatially Constrained Mixture Model(SCMM)is an image segmentation model that works over the framework of maximum a-posteriori and Markov Random Field(MAP-MRF).It developed its own maximization step to be used within this framework.This research has proposed an improvement in the SCMM’s maximization step for segmenting simulated brain Magnetic Resonance Images(MRIs).The improved model is named as the Weighted Spatially Constrained Finite Mixture Model(WSCFMM).To compare the performance of SCMM and WSCFMM,simulated T1-Weighted normal MRIs were segmented.A region of interest(ROI)was extracted from segmented images.The similarity level between the extracted ROI and the ground truth(GT)was found by using the Jaccard and Dice similarity measuring method.According to the Jaccard similarity measuring method,WSCFMM showed an overall improvement of 4.72%,whereas the Dice similarity measuring method provided an overall improvement of 2.65%against the SCMM.Besides,WSCFMM signicantly stabilized and reduced the execution time by showing an improvement of 83.71%.The study concludes that WSCFMM is a stable model and performs better as compared to the SCMM in noisy and noise-free environments. 展开更多
关键词 finite mixture model maximum aposteriori Markov random eld image segmentation
下载PDF
Log-cumulants of the finite mixture model and their application to statistical analysis of fully polarimetric UAVSAR data
3
作者 Xinping Deng Jinsong Chen +2 位作者 Hongzhong Li Pengpeng Han Wen Yang 《Geo-Spatial Information Science》 SCIE CSCD 2018年第1期45-55,共11页
Since its first flight in 2007,the UAVSAR instrument of NASA has acquired a large number of fully Polarimetric SAR(PolSAR)data in very high spatial resolution.It is possible to observe small spatial features in this t... Since its first flight in 2007,the UAVSAR instrument of NASA has acquired a large number of fully Polarimetric SAR(PolSAR)data in very high spatial resolution.It is possible to observe small spatial features in this type of data,offering the opportunity to explore structures in the images.In general,the structured scenes would present multimodal or spiky histograms.The finite mixture model has great advantages in modeling data with irregular histograms.In this paper,a type of important statistics called log-cumulants,which could be used to design parameter estimator or goodness-of-fit tests,are derived for the finite mixture model.They are compared with logcumulants of the texture models.The results are adopted to UAVSAR data analysis to determine which model is better for different land types. 展开更多
关键词 finite mixture model UAVSAR log-cumulant statistical analysis Polarimetric SAR(PolSAR)
原文传递
Local component based principal component analysis model for multimode process monitoring 被引量:5
4
作者 Yuan Li Dongsheng Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第6期116-124,共9页
For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component b... For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component based principal component analysis(LCPCA)approach for monitoring the status of a multimode process.In LCPCA,the process prior knowledge of mode division is not required and it purely based on the process data.Firstly,LCPCA divides the processes data into multiple local components using finite Gaussian mixture model mixture(FGMM).Then,calculating the posterior probability is applied to determine each sample belonging to which local component.After that,the local component information(such as mean and standard deviation)is used to standardize each sample of local component.Finally,the standardized samples of each local component are combined to train PCA monitoring model.Based on the PCA monitoring model,two monitoring statistics T^(2) and SPE are used for monitoring multimode processes.Through a numerical example and the Tennessee Eastman(TE)process,the monitoring result demonstrates that LCPCA outperformed conventional PCA and LNS-PCA in the fault detection rate. 展开更多
关键词 Principal component analysis finite Gaussian mixture model Process monitoring Tennessee Eastman(TE)process
下载PDF
MULTITARGET STATE AND TRACK ESTIMATION FOR THE PROBABILITY HYPOTHESES DENSITY FILTER 被引量:3
5
作者 Liu Weifeng Han Chongzhao +2 位作者 Lian Feng Xu Xiaobin Wen Chenglin 《Journal of Electronics(China)》 2009年第1期2-12,共11页
The particle Probability Hypotheses Density (particle-PHD) filter is a tractable approach for Random Finite Set (RFS) Bayes estimation, but the particle-PHD filter can not directly derive the target track. Most existi... The particle Probability Hypotheses Density (particle-PHD) filter is a tractable approach for Random Finite Set (RFS) Bayes estimation, but the particle-PHD filter can not directly derive the target track. Most existing approaches combine the data association step to solve this problem. This paper proposes an algorithm which does not need the association step. Our basic ideal is based on the clustering algorithm of Finite Mixture Models (FMM). The intensity distribution is first derived by the particle-PHD filter, and then the clustering algorithm is applied to estimate the multitarget states and tracks jointly. The clustering process includes two steps: the prediction and update. The key to the proposed algorithm is to use the prediction as the initial points and the convergent points as the es- timates. Besides, Expectation-Maximization (EM) and Markov Chain Monte Carlo (MCMC) ap- proaches are used for the FMM parameter estimation. 展开更多
关键词 Probability Hypotheses Density (PHD) Particle-PHD filter State and track estimation finite mixture models
下载PDF
From Sequential to Parallel Growth of Cities: Theory and Evidence from Canada
6
作者 SHENG Kerong FAN Jie +1 位作者 SUN Wei MA Hailong 《Chinese Geographical Science》 SCIE CSCD 2016年第3期377-388,共12页
This paper examines city growth patterns and the corresponding city size distribution evolution over long periods of time using a simple New Economic Geography(NEG) model and urban population data from Canada. The mai... This paper examines city growth patterns and the corresponding city size distribution evolution over long periods of time using a simple New Economic Geography(NEG) model and urban population data from Canada. The main findings are twofold. First, there is a transition from sequential to parallel growth of cities over long periods of time: city growth shows a sequential mode in the stage of rapid urbanization, i.e., the cities with the best development conditions will take the lead in growth, after which the cities with higher ranks will become the fastest-growing cities; in the late stage of urbanization, city growth converges according to Gibrat′s law, and exhibits a parallel growth pattern. Second, city size distribution is found to have persistent structural characteristics: the city system is self-organized into multiple discrete size groups; city growth shows club convergence characteristics, and the cities with similar development conditions eventually converge to a similar size. The results will not only enhance our understanding of urbanization process, but will also provide a timely and clear policy reference for promoting the healthy urbanization of developing countries. 展开更多
关键词 sequential city growth Gibrta′s law finite mixture model convergence club Canada
下载PDF
Performance monitoring of non-gaussian chemical processes with modes-switching using globality-locality preserving projection 被引量:2
7
作者 Xin Peng Yang Tang +1 位作者 Wenli Du Feng Qian 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2017年第3期429-439,共11页
In this paper, we propose a novel performance monitoring and fault detection method, which is based on modified structure analysis and globality and locality preserving (MSAGL) projection, for non-Gaussian processes... In this paper, we propose a novel performance monitoring and fault detection method, which is based on modified structure analysis and globality and locality preserving (MSAGL) projection, for non-Gaussian processes with multiple operation conditions. By using locality preserving projection to analyze the embedding geometrical manifold and extracting the non-Gaussian features by independent component analysis, MSAGL preserves both the global and local structures of the data simultaneously. Furthermore, the tradeoff parameter of MSAGL is tuned adaptively in order to find the projection direction optimal for revealing the hidden structural information. The validity and effectiveness of this approach are illustrated by applying the proposed technique to the Tennessee Eastman process simulation under multiple operation conditions. The results demonstrate the advantages of the proposed method over conventional eigendecomposition-based monitoring methotis. 展开更多
关键词 non-Gaussian processes subspace projection independent component analysis locality preserving projection finite mixture model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部