With the gradual yet unequivocal phasing out of ozone depleting substances(ODSs), the environmental crisis caused by the discovery of an ozone hole over the Antarctic has lessened in severity and a promising recovery ...With the gradual yet unequivocal phasing out of ozone depleting substances(ODSs), the environmental crisis caused by the discovery of an ozone hole over the Antarctic has lessened in severity and a promising recovery of the ozone layer is predicted in this century. However, strong volcanic activity can also cause ozone depletion that might be severe enough to threaten the existence of life on Earth. In this study, a transport model and a coupled chemistry–climate model were used to simulate the impacts of super volcanoes on ozone depletion. The volcanic eruptions in the experiments were the 1991 Mount Pinatubo eruption and a 100 × Pinatubo size eruption. The results show that the percentage of global mean total column ozone depletion in the 2050 RCP8.5 100 × Pinatubo scenario is approximately 6% compared to two years before the eruption and 6.4% in tropics. An identical simulation, 100 × Pinatubo eruption only with natural source ODSs, produces an ozone depletion of 2.5% compared to two years before the eruption, and with 4.4% loss in the tropics. Based on the model results,the reduced ODSs and stratospheric cooling lighten the ozone depletion after super volcanic eruption.展开更多
Tropospheric ozone is a secondary air pollutant produced in the presence of nitrogen oxides (NO_x),volatile organic compounds (VOCs),and solar radiation.In an urban environment,ground-level vehicular exhaust is the ma...Tropospheric ozone is a secondary air pollutant produced in the presence of nitrogen oxides (NO_x),volatile organic compounds (VOCs),and solar radiation.In an urban environment,ground-level vehicular exhaust is the major anthropogenic source of ozone precursors.In the cases of street canyons,pollutant dilution is weakened by the surrounding buildings that creates localized high concentration of NO_x and VOCs,and thus leads to high potential of ozone formation.By considering the major physical and chemical p...展开更多
A global two-dimensional zonally averaged chemistry model is developed to study the chemi-cal composition of atmosphere. The region of the model is from 90°S to 90°N and from the ground to the altitude of 20...A global two-dimensional zonally averaged chemistry model is developed to study the chemi-cal composition of atmosphere. The region of the model is from 90°S to 90°N and from the ground to the altitude of 20 km with a resolution of 5° x 1 km. The wind field is residual circulation calcu-lated from diabatic rate. 34 species and 104 chemical and photochemical reactions are considered in the model. The sources of CH4, CO and NOx, which are divided into seasonal sources and non-seasonal sources, are parameterized as a function of latitude and time. The chemical composi-tion of atmosphere was simulated with emission level of CH4, CO and NOx in 1990. The results are compared with observations and other model results, showing that the model is successful to simu-late the atmospheric chemical composition and distribution of CH4. Key words Global two-dimensional chemistry model - Atmospheric composition - Emission This work was supported by the State Key Program for basic research “ Climate Dynamics and Cli-mate Prediction Theory” (Pandeng-yu-21).The authors would like to express their thanks to the National Oceanic and Atmospheric Administration (NOAA), Climate Monitoring and Diagnostics Laboratory (CMDL), Carbon Cycle Group for providing the observational data of CO and CH4.展开更多
This analysis of the multi-model aerosol optical depth (AOD) in eastern China using the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) datasets shows that the global models underestimate the ...This analysis of the multi-model aerosol optical depth (AOD) in eastern China using the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) datasets shows that the global models underestimate the AOD by 33% and 44% in southern and northern China, respectively, and decrease the relative humidity (RH) of the air in the surface layer to 71%–80%, which is less than the RH of 77%–92% in reanalysis meteorological datasets. This indicates that the low biases in the RH partially account for the errors in the AOD. The AOD is recalculated based on the model aerosol concentrations and the reanalysis humidity data. Improving the mean value of the RH increases the multi-model annual mean AOD by 45% in southern China and by 33% in June–August in northern China. This method of improving the AOD is successful in most of the ACCMIP models, but it is unlikely to be successful in GISS-E2-R, in which the plot of its AOD efficiency against RH strongly deviates from the rest of the models. The effect of the improvement in the modeled RH on the AOD depends on the concentration of aerosols. The shape error in the frequency distribution of the RH is likely to be more important than the error in the mean value of the RH, but this requires further research.展开更多
To realistically simulate the impacts of marine isoprene and primary organic aerosols (POA) on atmospheric chemistry, a unified model framework with online emissions, comprehensive treatment of gas-phase chemistry, an...To realistically simulate the impacts of marine isoprene and primary organic aerosols (POA) on atmospheric chemistry, a unified model framework with online emissions, comprehensive treatment of gas-phase chemistry, and advanced aerosol microphysics is required. In this work, the global-through-urban WRF/Chem model (GU-WRF/Chem) implemented with the online emissions of marine isoprene and size-resolved marine POA is applied to examine such impacts. The net effect of these emissions was increased surface concentrations of isoprene and organic aerosols and decreased surfaced concentrations of hydroxyl radical and ozone over most marine regions. With the inclusion of these emissions, GU-WRF/Chem better predicted the surface concentrations of isoprene and organic aerosols and the aerosol number size distribution when compared to measurements in clean marine conditions.展开更多
Using the outputs from 16 chemistry-climate models(CCMs), the trends of lower- to mid-stratospheric water vapor(WV) during the period 1980–2005 were studied. Comparisons were made between the CCM results and European...Using the outputs from 16 chemistry-climate models(CCMs), the trends of lower- to mid-stratospheric water vapor(WV) during the period 1980–2005 were studied. Comparisons were made between the CCM results and European Centre for Medium-Range Weather Forecasts(ECMWF) Interim Reanalysis(ERA-Interim).The results of most of the CCMs, and those based on ERA-Interim, showed the trends of lower- to mid-stratospheric WV during the period 1980–2005 to be positive, with the extent of the trend increasing with altitude. The trend of lower- to mid-stratospheric WV in the ensemble mean of the CCMs was 0.03 ppmv per decade,which was about twice as large as that based on ERA-Interim. The authors also used a state-of-the-art general circulation model to evaluate the impacts of greenhouse gas(GHG) concentration increases and ozone depletion on stratospheric WV. The simulation results showed that the increases of lower- to mid-stratospheric WV affected by the combined effects of GHG and ozone changes happened mainly via warming of the tropopause and enhancement of the Brewer-Dobson circulation(BDC), with the former being the greater contributor.GHG increase led to a higher and warmer tropopause with stronger BDC, which in turn led to more WV entering the stratosphere; while ozone depletion led to a higher and cooler tropopause, which caused the decreases of lowerto mid-stratospheric WV, despite also causing stronger BDC.展开更多
Hydrogeochemistry and factor analysis were conducted together to assess the distribution and the major geochemical processes in fluoride-contaminated shallow groundwater in the Yuncheng Basin.Spatially,fluoride concen...Hydrogeochemistry and factor analysis were conducted together to assess the distribution and the major geochemical processes in fluoride-contaminated shallow groundwater in the Yuncheng Basin.Spatially,fluoride concentration was low(<1.5 mg/L)in the southern piedmont plain,medium(<4 mg/L)in the central basin,and high(up to 14.1 mg/L)in Kaolao lowland areas in shallow aquifers.A three-factor principal component analysis model explained over 75.1%of the total variance.Sediment weathering leaching and evapotranspiration were recognized as the first primary hydrochemical processes response for the groundwater chemistry and explained the largest portion(42.1%)of the total variance.Factor two reflects the negative influence of human activities,with a positive loading of NO3^-and HCO3^-,and negative loading of well depth.Fluoride-bearing mineral dissolution and alkaline condition was ranked as the third factors responding for groundwater chemistry and explained 11.2%of the total variance.展开更多
The enantiomers of chiral drugs often have different potencies, toxicities, and biochemical properties. Therefore, the FDA and other worldwide regulatory agencies require manufactures to test and prove the enantiomeri...The enantiomers of chiral drugs often have different potencies, toxicities, and biochemical properties. Therefore, the FDA and other worldwide regulatory agencies require manufactures to test and prove the enantiomeric purity of chiral drugs. Amino acid based molecular micelles (AABMM) have been used in chiral CE separations since the 1990’s because of their low environmental impact and because their properties can easily be tuned by changing the amino acids in the chiral surfactant head groups. Using molecular dynamics simulations to investigate the structures and properties of AABMM is part of an ongoing study focusing on investigating and elucidating the factors responsible for chiral recognition with AABMM. The results will be useful for the proper design and selection of more efficient chiral selectors. The micelles investigated contained approximately twenty covalently linked surfactant monomers. Each monomer was in turn composed of an undecyl hydrocarbon chain bound to a dipeptide headgroup containing of all combinations of L-Alanine, L-Valine, and L-Leucine. These materials are of interest because they are effective chiral selectors in capillary electrophoresis separations. Molecular dynamics simulation analyses were used to investigate how the sizes and positions of the headgroup amino acid R-groups affected the solvent accessible surface areas of each AABMM chiral center. In addition, headgroup dihedral angle analyses were used to investigate how amino acid R-group size and position affected the overall headgroup conformations. Finally, distance measurements were used to study the structural and conformational flexibilities of each AABMM headgroup. All analyses were performed in the context of a broader study focused on developing structure-based predictive tools to identify the factors responsible for a) self-assembly, b) function, c) higher ordered structure and d) molecular recognition of these amino acid based molecular micelles.展开更多
Anchor bolts are commonly used throughout underground mining and tunnelling operations to improve roof stability.However,premature failures of anchor bolts are significant safety risks in underground excavations aroun...Anchor bolts are commonly used throughout underground mining and tunnelling operations to improve roof stability.However,premature failures of anchor bolts are significant safety risks in underground excavations around the world due to susceptible bolt materials,a moist and corrosive environment and tensile stress.In this paper,laboratory experiments and hydrogeochemical models were combined to investigate anchor bolt corrosion and failure associated with aqueous environments in underground coal mines.Experimental data and collated mine water chemistry data were used to simulate bolt corrosion reactions with groundwater and rock materials with the PHREEQC code.A series of models quantified reactions involving iron and carbon under aerobic and anaerobic conditions in comparison with ion,pH and pE trends in experimental data.The models showed that corrosion processes are inhibited by some natural environmental factors,because dissolved oxygen would cause more iron from the bolts to oxidize into solution.These interdisciplinary insights into corrosion failure of underground anchor bolts confirm that environmental factors are important contributors to stress corrosion cracking.展开更多
B3LYP/6-31G(d,p) method was used to investigate the catalytic cracking mechanism of biomass tar model compound.Phenol,toluene and benzene were selected as the tar model compounds and CaO was selected as the catalyst.T...B3LYP/6-31G(d,p) method was used to investigate the catalytic cracking mechanism of biomass tar model compound.Phenol,toluene and benzene were selected as the tar model compounds and CaO was selected as the catalyst.The pathways of tar compound radical absorbed by CaO were determined firstly through comparing enthalpy changes of the absorption,and then Mulliken population changes were analyzed.The results show that the absorption of tar model compound radical and CaO is an exothermic reaction.Formation of C—O—Ca is more easily than that of C—Ca—O and formation of Caromatic—Caromatic—Ca—O is more easily than that of Caromatic—C(O)—Ca—O.The C—C bond Mulliken populations in tar model compound radicals are reduced by 11.9%,10.5% and 15.5% in the case of a hydrogen atom removed,and those are 15.7%,14.3% and 16.3% in the case of two hydrogen atoms removed through the absorption of CaO.Catalytic ability of CaO acting on the tar model compound is in an order of phenol>benzene>toluene.展开更多
1 Introduction With the industrial development of lithium battery,nuclear and aerospace industry,the demands of metal lithium and its compounds are increasing significantly.Lithium is called as the energy of the metal...1 Introduction With the industrial development of lithium battery,nuclear and aerospace industry,the demands of metal lithium and its compounds are increasing significantly.Lithium is called as the energy of the metal in the new century(Zhang et al.2001).The total reserve of lithium resources around the world7展开更多
A two-dimensional global chemistry model is developed to study the distribution andlong-term trends of methane. The model contains 34 species and 104 chemical andphotochemical reactions. Using the model, the long-term...A two-dimensional global chemistry model is developed to study the distribution andlong-term trends of methane. The model contains 34 species and 104 chemical andphotochemical reactions. Using the model, the long-term trends of CH4, CO and OH in atmosphere are simulated, comparison between the model and observations shows that thesimulation is successful.Experiments are done to investigate the causes of dramatic decrease in the growth rate ofCH4 in 1992 such as OH increase due to stratospheric ozone depletion, decrease of temperature in the troposphere due to Mount Pinatubo eruption and descendent of CH4 sources fluxes.A new explanation is proposed and verified by this model that the decrease of CO emissionplays an important role for the abnormal growth rate of CH4 in 1992. We find that the decreases of CH4 and CO emissions are the main reasons for the sudden decrease of growth rateof CH4 in 1992, which account for 73% and 27% respectively.展开更多
For a long period of time, the determination of phase diagrams was only supported by experiments related to thermal effects or thermodynamic measurements: thermal analysis, calorimetric measurements, vapor pressures,...For a long period of time, the determination of phase diagrams was only supported by experiments related to thermal effects or thermodynamic measurements: thermal analysis, calorimetric measurements, vapor pressures, and EMF measurements. As a matter of fact, solid-solid transformations were not so accurately determined and could not be taken into account in the system's analysis. First, X-ray diffraction methods were used as a support for the thermal analysis. Second, the implementation of novel tools in structural analysis (for example, the Rietveld method) has permitted to increase the knowledge of phase stability. Finally, modeling the phases using a Calphad method needed increasingly more structural results to determine and better understand the phase diagrams. On the other hand, the Calphad method has been widely developed for metallic systems, for oxide systems, and in the past 10 years, for some semi-conductor systems, for example, gallium arsenide, cadmium telluride, and lead telluride systems. In such applications, it is very important to bring point defects in the modeling of the phases to map the defects as a function of the chemical composition. Owing to its complexity, this characteristic, the knowledge of which is crucial for the understanding and the control of potential physical applications, was ignored in the previous assessment of semi-conductor systems.展开更多
A concise analytical model for the static dipole polarizability of ionized atoms and molecules is created for the first time.As input,it requires,alongside the polarizability of neutral counterpart of a given ion,only...A concise analytical model for the static dipole polarizability of ionized atoms and molecules is created for the first time.As input,it requires,alongside the polarizability of neutral counterpart of a given ion,only the charge and elemental composition.This physically motivated semiempirical model is based on a number of established regularities in polarizability of charged monatomic and polyatomic compounds.In order to adjust it,the results of quantum chemistry calculations and gas-phase measurements available for a broad range of ionized multielectron species are employed.To counteract the appreciable bias in the literature data toward polarizability of monoatomic ions,for some molecular ions of general concern the results of the authors'own density functional theory calculations are additionally invoked.A total of 541 data points are used to optimize the model.It is demonstrated that the model we suggested has reasonable(given the substantial uncertainties of the reference data)accuracy in predicting the static isotropic polarizability of arbitrarily charged ions of any size and atomic composition.The resulting polarizability estimates are found to achieve a coefficient of determination of 0.93 for the assembled data set.The created analytic tool is universally applicable and might be advantageous for some applications where there is an urgent need for rapid low-cost evaluation of the static gas-phase polarizability of ionized atoms and molecules.This is especially relevant to constructing the complex models of nonequilibrium chemical kinetics aimed at precisely describing the observable refractive index(dielectric permittivity)of plasma flows.The data sets that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.07526.展开更多
We present a semiempirical analytical model for the static polarizability of electronically excited atoms and molecules,which requires very few readily accessible input data,including the ground-state polarizability,e...We present a semiempirical analytical model for the static polarizability of electronically excited atoms and molecules,which requires very few readily accessible input data,including the ground-state polarizability,elemental composition,ionization potential,and spin multiplicities of excited and ground states.This very simple model formulated in a semiclassical framework is based on a number of observed trends in polarizability of electronically excited compounds.To adjust the model,both accurate theoretical predictions and reliable measurements previously reported elsewhere for a broad range of multielectron species in the gas phase are utilized.For some representative compounds of general concern that have not yet attracted sufficient research interest,the results of our multireference second-order perturbation theory calculations are additionally engaged.We show that the model we developed has reasonable(given the considerable uncertainties in the reference data)accuracy in predicting the static polarizability of electronically excited species of arbitrary size and excitation energy.These findings can be useful for many applications,where there is a need for inexpensive and quick assessments of the static gas-phase polarizability of excited electronic states,in particular,when building the complex nonequilibrium kinetic models to describe the observed optical refractivity(dielectric permittivity)of nonthermal reacting gas flows.展开更多
基金supported by the National Key Research and Development Project of China (Grant No. 2016YFA0600604)the National Natural Science Foundation of China (Grant No. 41461144001 and No. 41861144016)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2014064)
文摘With the gradual yet unequivocal phasing out of ozone depleting substances(ODSs), the environmental crisis caused by the discovery of an ozone hole over the Antarctic has lessened in severity and a promising recovery of the ozone layer is predicted in this century. However, strong volcanic activity can also cause ozone depletion that might be severe enough to threaten the existence of life on Earth. In this study, a transport model and a coupled chemistry–climate model were used to simulate the impacts of super volcanoes on ozone depletion. The volcanic eruptions in the experiments were the 1991 Mount Pinatubo eruption and a 100 × Pinatubo size eruption. The results show that the percentage of global mean total column ozone depletion in the 2050 RCP8.5 100 × Pinatubo scenario is approximately 6% compared to two years before the eruption and 6.4% in tropics. An identical simulation, 100 × Pinatubo eruption only with natural source ODSs, produces an ozone depletion of 2.5% compared to two years before the eruption, and with 4.4% loss in the tropics. Based on the model results,the reduced ODSs and stratospheric cooling lighten the ozone depletion after super volcanic eruption.
文摘Tropospheric ozone is a secondary air pollutant produced in the presence of nitrogen oxides (NO_x),volatile organic compounds (VOCs),and solar radiation.In an urban environment,ground-level vehicular exhaust is the major anthropogenic source of ozone precursors.In the cases of street canyons,pollutant dilution is weakened by the surrounding buildings that creates localized high concentration of NO_x and VOCs,and thus leads to high potential of ozone formation.By considering the major physical and chemical p...
文摘A global two-dimensional zonally averaged chemistry model is developed to study the chemi-cal composition of atmosphere. The region of the model is from 90°S to 90°N and from the ground to the altitude of 20 km with a resolution of 5° x 1 km. The wind field is residual circulation calcu-lated from diabatic rate. 34 species and 104 chemical and photochemical reactions are considered in the model. The sources of CH4, CO and NOx, which are divided into seasonal sources and non-seasonal sources, are parameterized as a function of latitude and time. The chemical composi-tion of atmosphere was simulated with emission level of CH4, CO and NOx in 1990. The results are compared with observations and other model results, showing that the model is successful to simu-late the atmospheric chemical composition and distribution of CH4. Key words Global two-dimensional chemistry model - Atmospheric composition - Emission This work was supported by the State Key Program for basic research “ Climate Dynamics and Cli-mate Prediction Theory” (Pandeng-yu-21).The authors would like to express their thanks to the National Oceanic and Atmospheric Administration (NOAA), Climate Monitoring and Diagnostics Laboratory (CMDL), Carbon Cycle Group for providing the observational data of CO and CH4.
基金jointly supported by the National Key Research and Development Program of China [grant number2016YFE0201400]the Basic Research Program of the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics,Chinese Academy of Sciences [grant number 7-082999]
文摘This analysis of the multi-model aerosol optical depth (AOD) in eastern China using the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) datasets shows that the global models underestimate the AOD by 33% and 44% in southern and northern China, respectively, and decrease the relative humidity (RH) of the air in the surface layer to 71%–80%, which is less than the RH of 77%–92% in reanalysis meteorological datasets. This indicates that the low biases in the RH partially account for the errors in the AOD. The AOD is recalculated based on the model aerosol concentrations and the reanalysis humidity data. Improving the mean value of the RH increases the multi-model annual mean AOD by 45% in southern China and by 33% in June–August in northern China. This method of improving the AOD is successful in most of the ACCMIP models, but it is unlikely to be successful in GISS-E2-R, in which the plot of its AOD efficiency against RH strongly deviates from the rest of the models. The effect of the improvement in the modeled RH on the AOD depends on the concentration of aerosols. The shape error in the frequency distribution of the RH is likely to be more important than the error in the mean value of the RH, but this requires further research.
文摘To realistically simulate the impacts of marine isoprene and primary organic aerosols (POA) on atmospheric chemistry, a unified model framework with online emissions, comprehensive treatment of gas-phase chemistry, and advanced aerosol microphysics is required. In this work, the global-through-urban WRF/Chem model (GU-WRF/Chem) implemented with the online emissions of marine isoprene and size-resolved marine POA is applied to examine such impacts. The net effect of these emissions was increased surface concentrations of isoprene and organic aerosols and decreased surfaced concentrations of hydroxyl radical and ozone over most marine regions. With the inclusion of these emissions, GU-WRF/Chem better predicted the surface concentrations of isoprene and organic aerosols and the aerosol number size distribution when compared to measurements in clean marine conditions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41225018 and 41305036)
文摘Using the outputs from 16 chemistry-climate models(CCMs), the trends of lower- to mid-stratospheric water vapor(WV) during the period 1980–2005 were studied. Comparisons were made between the CCM results and European Centre for Medium-Range Weather Forecasts(ECMWF) Interim Reanalysis(ERA-Interim).The results of most of the CCMs, and those based on ERA-Interim, showed the trends of lower- to mid-stratospheric WV during the period 1980–2005 to be positive, with the extent of the trend increasing with altitude. The trend of lower- to mid-stratospheric WV in the ensemble mean of the CCMs was 0.03 ppmv per decade,which was about twice as large as that based on ERA-Interim. The authors also used a state-of-the-art general circulation model to evaluate the impacts of greenhouse gas(GHG) concentration increases and ozone depletion on stratospheric WV. The simulation results showed that the increases of lower- to mid-stratospheric WV affected by the combined effects of GHG and ozone changes happened mainly via warming of the tropopause and enhancement of the Brewer-Dobson circulation(BDC), with the former being the greater contributor.GHG increase led to a higher and warmer tropopause with stronger BDC, which in turn led to more WV entering the stratosphere; while ozone depletion led to a higher and cooler tropopause, which caused the decreases of lowerto mid-stratospheric WV, despite also causing stronger BDC.
基金financially supported by the National Natural Science Foundation of China(41877204)Foundation for Innovative Research Groups of the National Natural Science Foundation of China(41521001)the China Postdoctoral Science Foundation(2018M642944)。
文摘Hydrogeochemistry and factor analysis were conducted together to assess the distribution and the major geochemical processes in fluoride-contaminated shallow groundwater in the Yuncheng Basin.Spatially,fluoride concentration was low(<1.5 mg/L)in the southern piedmont plain,medium(<4 mg/L)in the central basin,and high(up to 14.1 mg/L)in Kaolao lowland areas in shallow aquifers.A three-factor principal component analysis model explained over 75.1%of the total variance.Sediment weathering leaching and evapotranspiration were recognized as the first primary hydrochemical processes response for the groundwater chemistry and explained the largest portion(42.1%)of the total variance.Factor two reflects the negative influence of human activities,with a positive loading of NO3^-and HCO3^-,and negative loading of well depth.Fluoride-bearing mineral dissolution and alkaline condition was ranked as the third factors responding for groundwater chemistry and explained 11.2%of the total variance.
文摘The enantiomers of chiral drugs often have different potencies, toxicities, and biochemical properties. Therefore, the FDA and other worldwide regulatory agencies require manufactures to test and prove the enantiomeric purity of chiral drugs. Amino acid based molecular micelles (AABMM) have been used in chiral CE separations since the 1990’s because of their low environmental impact and because their properties can easily be tuned by changing the amino acids in the chiral surfactant head groups. Using molecular dynamics simulations to investigate the structures and properties of AABMM is part of an ongoing study focusing on investigating and elucidating the factors responsible for chiral recognition with AABMM. The results will be useful for the proper design and selection of more efficient chiral selectors. The micelles investigated contained approximately twenty covalently linked surfactant monomers. Each monomer was in turn composed of an undecyl hydrocarbon chain bound to a dipeptide headgroup containing of all combinations of L-Alanine, L-Valine, and L-Leucine. These materials are of interest because they are effective chiral selectors in capillary electrophoresis separations. Molecular dynamics simulation analyses were used to investigate how the sizes and positions of the headgroup amino acid R-groups affected the solvent accessible surface areas of each AABMM chiral center. In addition, headgroup dihedral angle analyses were used to investigate how amino acid R-group size and position affected the overall headgroup conformations. Finally, distance measurements were used to study the structural and conformational flexibilities of each AABMM headgroup. All analyses were performed in the context of a broader study focused on developing structure-based predictive tools to identify the factors responsible for a) self-assembly, b) function, c) higher ordered structure and d) molecular recognition of these amino acid based molecular micelles.
基金Project(140100153)supported by Australian Research Council Linkage Grant。
文摘Anchor bolts are commonly used throughout underground mining and tunnelling operations to improve roof stability.However,premature failures of anchor bolts are significant safety risks in underground excavations around the world due to susceptible bolt materials,a moist and corrosive environment and tensile stress.In this paper,laboratory experiments and hydrogeochemical models were combined to investigate anchor bolt corrosion and failure associated with aqueous environments in underground coal mines.Experimental data and collated mine water chemistry data were used to simulate bolt corrosion reactions with groundwater and rock materials with the PHREEQC code.A series of models quantified reactions involving iron and carbon under aerobic and anaerobic conditions in comparison with ion,pH and pE trends in experimental data.The models showed that corrosion processes are inhibited by some natural environmental factors,because dissolved oxygen would cause more iron from the bolts to oxidize into solution.These interdisciplinary insights into corrosion failure of underground anchor bolts confirm that environmental factors are important contributors to stress corrosion cracking.
基金Project(51276023)supported by the National Natural Science Foundation of China
文摘B3LYP/6-31G(d,p) method was used to investigate the catalytic cracking mechanism of biomass tar model compound.Phenol,toluene and benzene were selected as the tar model compounds and CaO was selected as the catalyst.The pathways of tar compound radical absorbed by CaO were determined firstly through comparing enthalpy changes of the absorption,and then Mulliken population changes were analyzed.The results show that the absorption of tar model compound radical and CaO is an exothermic reaction.Formation of C—O—Ca is more easily than that of C—Ca—O and formation of Caromatic—Caromatic—Ca—O is more easily than that of Caromatic—C(O)—Ca—O.The C—C bond Mulliken populations in tar model compound radicals are reduced by 11.9%,10.5% and 15.5% in the case of a hydrogen atom removed,and those are 15.7%,14.3% and 16.3% in the case of two hydrogen atoms removed through the absorption of CaO.Catalytic ability of CaO acting on the tar model compound is in an order of phenol>benzene>toluene.
基金Financial supports from National Natural Science of China (21276194)the Key Pillar Program of Tianjin Municipal Science and Technology (11ZCKGX02800)+1 种基金the Specialized Research Fund for the Doctoral Program of Chinese Higher Education (20101208110003)The Research Fund of Tianjin Key Laboratory of Marine Resources and Chemistry (201206)
文摘1 Introduction With the industrial development of lithium battery,nuclear and aerospace industry,the demands of metal lithium and its compounds are increasing significantly.Lithium is called as the energy of the metal in the new century(Zhang et al.2001).The total reserve of lithium resources around the world7
文摘A two-dimensional global chemistry model is developed to study the distribution andlong-term trends of methane. The model contains 34 species and 104 chemical andphotochemical reactions. Using the model, the long-term trends of CH4, CO and OH in atmosphere are simulated, comparison between the model and observations shows that thesimulation is successful.Experiments are done to investigate the causes of dramatic decrease in the growth rate ofCH4 in 1992 such as OH increase due to stratospheric ozone depletion, decrease of temperature in the troposphere due to Mount Pinatubo eruption and descendent of CH4 sources fluxes.A new explanation is proposed and verified by this model that the decrease of CO emissionplays an important role for the abnormal growth rate of CH4 in 1992. We find that the decreases of CH4 and CO emissions are the main reasons for the sudden decrease of growth rateof CH4 in 1992, which account for 73% and 27% respectively.
文摘For a long period of time, the determination of phase diagrams was only supported by experiments related to thermal effects or thermodynamic measurements: thermal analysis, calorimetric measurements, vapor pressures, and EMF measurements. As a matter of fact, solid-solid transformations were not so accurately determined and could not be taken into account in the system's analysis. First, X-ray diffraction methods were used as a support for the thermal analysis. Second, the implementation of novel tools in structural analysis (for example, the Rietveld method) has permitted to increase the knowledge of phase stability. Finally, modeling the phases using a Calphad method needed increasingly more structural results to determine and better understand the phase diagrams. On the other hand, the Calphad method has been widely developed for metallic systems, for oxide systems, and in the past 10 years, for some semi-conductor systems, for example, gallium arsenide, cadmium telluride, and lead telluride systems. In such applications, it is very important to bring point defects in the modeling of the phases to map the defects as a function of the chemical composition. Owing to its complexity, this characteristic, the knowledge of which is crucial for the understanding and the control of potential physical applications, was ignored in the previous assessment of semi-conductor systems.
基金Project supported by the grant of the Russian Science Foundation(Project No.22-29-00124)。
文摘A concise analytical model for the static dipole polarizability of ionized atoms and molecules is created for the first time.As input,it requires,alongside the polarizability of neutral counterpart of a given ion,only the charge and elemental composition.This physically motivated semiempirical model is based on a number of established regularities in polarizability of charged monatomic and polyatomic compounds.In order to adjust it,the results of quantum chemistry calculations and gas-phase measurements available for a broad range of ionized multielectron species are employed.To counteract the appreciable bias in the literature data toward polarizability of monoatomic ions,for some molecular ions of general concern the results of the authors'own density functional theory calculations are additionally invoked.A total of 541 data points are used to optimize the model.It is demonstrated that the model we suggested has reasonable(given the substantial uncertainties of the reference data)accuracy in predicting the static isotropic polarizability of arbitrarily charged ions of any size and atomic composition.The resulting polarizability estimates are found to achieve a coefficient of determination of 0.93 for the assembled data set.The created analytic tool is universally applicable and might be advantageous for some applications where there is an urgent need for rapid low-cost evaluation of the static gas-phase polarizability of ionized atoms and molecules.This is especially relevant to constructing the complex models of nonequilibrium chemical kinetics aimed at precisely describing the observable refractive index(dielectric permittivity)of plasma flows.The data sets that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.07526.
基金supported by the grant of the Russian Science Foundation(project No.22-29-00124)。
文摘We present a semiempirical analytical model for the static polarizability of electronically excited atoms and molecules,which requires very few readily accessible input data,including the ground-state polarizability,elemental composition,ionization potential,and spin multiplicities of excited and ground states.This very simple model formulated in a semiclassical framework is based on a number of observed trends in polarizability of electronically excited compounds.To adjust the model,both accurate theoretical predictions and reliable measurements previously reported elsewhere for a broad range of multielectron species in the gas phase are utilized.For some representative compounds of general concern that have not yet attracted sufficient research interest,the results of our multireference second-order perturbation theory calculations are additionally engaged.We show that the model we developed has reasonable(given the considerable uncertainties in the reference data)accuracy in predicting the static polarizability of electronically excited species of arbitrary size and excitation energy.These findings can be useful for many applications,where there is a need for inexpensive and quick assessments of the static gas-phase polarizability of excited electronic states,in particular,when building the complex nonequilibrium kinetic models to describe the observed optical refractivity(dielectric permittivity)of nonthermal reacting gas flows.