期刊文献+
共找到406篇文章
< 1 2 21 >
每页显示 20 50 100
Parallel computation of unified finite-difference time-domain for underwater sound scattering 被引量:2
1
作者 冯玉田 王朔中 《Journal of Shanghai University(English Edition)》 CAS 2008年第2期120-125,共6页
In this work, we treat scattering objects, water, surface and bottom in a truly unified manner in a parallel finitedifference time-domain (FDTD) scheme, which is suitable for distributed parallel computing in a mess... In this work, we treat scattering objects, water, surface and bottom in a truly unified manner in a parallel finitedifference time-domain (FDTD) scheme, which is suitable for distributed parallel computing in a message passing interface (MPI) programming environment. The algorithm is implemented on a cluster-based high performance computer system. Parallel computation is performed with different division methods in 2D and 3D situations. Based on analysis of main factors affecting the speedup rate and parallel efficiency, data communication is reduced by selecting a suitable scheme of task division. A desirable scheme is recommended, giving a higher speedup rate and better efficiency. The results indicate that the unified parallel FDTD algorithm provides a solution to the numerical computation of acoustic scattering. 展开更多
关键词 parallel computation finite-difference time-domain (FDTD) message passing interface (MPI) object scattering.
下载PDF
Uniform stable conformal convolutional perfectly matched layer for enlarged cell technique conformal finite-difference time-domain method 被引量:1
2
作者 王玥 王建国 陈再高 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期128-136,共9页
Based on conformal construction of physical model in a three-dimensional Cartesian grid,an integral-based conformal convolutional perfectly matched layer(CPML) is given for solving the truncation problem of the open... Based on conformal construction of physical model in a three-dimensional Cartesian grid,an integral-based conformal convolutional perfectly matched layer(CPML) is given for solving the truncation problem of the open port when the enlarged cell technique conformal finite-difference time-domain(ECT-CFDTD) method is used to simulate the wave propagation inside a perfect electric conductor(PEC) waveguide.The algorithm has the same numerical stability as the ECT-CFDTD method.For the long-time propagation problems of an evanescent wave in a waveguide,several numerical simulations are performed to analyze the reflection error by sweeping the constitutive parameters of the integral-based conformal CPML.Our numerical results show that the integral-based conformal CPML can be used to efficiently truncate the open port of the waveguide. 展开更多
关键词 enlarged cell technique CONFORMAL finite-difference time-domain convolutional perfectlymatched layer
下载PDF
Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method 被引量:1
3
作者 马秀荣 徐林 +1 位作者 常世元 张双根 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期190-197,共8页
This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the... This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference timedomain method.We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm^(3+):YAG when the attenuation of the input pulse is taken into account.Meanwhile,we find the expression 0.09 exp(α'L),which is previously employed to describe the relationship between echo's efficiency and thickness,should be modified as 1.3 · 0.09 exp(2.4 ·α'L) with the propagation of echo considered. 展开更多
关键词 three-pulse photon echo Maxwell-Bloch equations finite-difference time-domain method
下载PDF
Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method 被引量:1
4
作者 窦虎 马红梅 孙玉宝 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期117-121,共5页
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ... The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change. 展开更多
关键词 finite-difference time-domain method blue phase liquid crystal display in-plane switching convergence effect
下载PDF
A spherical higher-order finite-difference time-domain algorithm with perfectly matched layer
5
作者 刘亚文 陈亦望 +1 位作者 张品 刘宗信 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期166-176,共11页
A higher-order finite-difference time-domain(HO-FDTD) in the spherical coordinate is presented in this paper. The stability and dispersion properties of the proposed scheme are investigated and an air-filled spheric... A higher-order finite-difference time-domain(HO-FDTD) in the spherical coordinate is presented in this paper. The stability and dispersion properties of the proposed scheme are investigated and an air-filled spherical resonator is modeled in order to demonstrate the advantage of this scheme over the finite-difference time-domain(FDTD) and the multiresolution time-domain(MRTD) schemes with respect to memory requirements and CPU time. Moreover, the Berenger's perfectly matched layer(PML) is derived for the spherical HO-FDTD grids, and the numerical results validate the efficiency of the PML. 展开更多
关键词 higher-order finite-difference time-domain spherical coordinates STABILITY numerical dispersion perfectly matched layer
下载PDF
Adjustable transmission properties through ring-shaped nanotube arrays using finite-difference time-domain method
6
作者 周凤麒 刘志敏 +1 位作者 李宏建 刘二根 《Journal of Central South University》 SCIE EI CAS 2014年第8期3013-3018,共6页
Metallic ring-shaped nanotube arrays are proposed and its optical transmission properties are studied by using finite-difference time-domain (FDTD) method. Compared with the transmission spectra of conventional circ... Metallic ring-shaped nanotube arrays are proposed and its optical transmission properties are studied by using finite-difference time-domain (FDTD) method. Compared with the transmission spectra of conventional circular nanotube arrays, two photonic band gaps are emerged in the transmission spectra offing-shaped nanotube arrays, the two band gaps and transmission spectra are adjusted by the length, inner radius, intertube spacing and the dielectric constants of the core and embedding medium, and magnitude modification, redshift and blueshift of the resonance modes are observed. A metallic ring-shaped nanotube arrays for subwavelength band-stop filter in the range of visible light can be achieved. To understand its physical origin, field-interference mechanism was suggested by the field distributions. The proposed nanostructures and results may have great potential applications in subwavelength near-field optics. 展开更多
关键词 ring-shaped nanotube arrays PLASMON transmission spectrum finite-difference time-domain (FDTD) OPTIMIZATION
下载PDF
An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme
7
作者 魏晓琨 邵维 +2 位作者 石胜兵 张勇 王秉中 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期74-82,共9页
An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D tra... An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method. 展开更多
关键词 conformal scheme locally one-dimensional(LOD) finite-difference time-domain(FDTD) method numerical dispersion unconditional stab
下载PDF
Perfect plane-wave source for a high-order symplectic finite-difference time-domain scheme
8
作者 王辉 黄志祥 +1 位作者 吴先良 任信钢 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第11期365-370,共6页
The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order sy... The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order symplectic finite- difference time-domain (SFDTD) scheme for the first time. By splitting the fields on one-dimensional grid and using the nature of numerical plane-wave in finite-difference time-domain (FDTD), the identical dispersion relation can be obtained and proved between the one-dimensional and three-dimensional grids. An efficient plane-wave source is simulated on one-dimensional grid and a perfect match can be achieved for a plane-wave propagating at any angle forming an integer grid cell ratio. Numerical simulations show that the method is valid for SFDTD and the residual field in SF region is shrinked down to -300 dB. 展开更多
关键词 splitting plane-wave finite-difference time-domain high-order symplectic finite-differencetime-domain scheme plane-wave source
下载PDF
IMPROVED LOCALLY CONFORMAL FINITE-DIFFERENCE TIME-DOMAIN METHOD FOR EDGE INCLINED SLOTS IN A FINITE WALL THICKNESS WAVEGUIDE
9
作者 LiLong ZhangYu LiangChanghong 《Journal of Electronics(China)》 2004年第3期229-235,共7页
An Improved Locally Conformal Finite-Difference Time-Domain (ILC-FDTD) method is presented in this paper, which is used to analyze the edge inclined slots penetrating adjacent broadwalls of a finite wall thickness wav... An Improved Locally Conformal Finite-Difference Time-Domain (ILC-FDTD) method is presented in this paper, which is used to analyze the edge inclined slots penetrating adjacent broadwalls of a finite wall thickness waveguide. ILC-FDTD not only removes tile instability of the original locally conformal FDTD algorithm, but also improves the computational accuracy by locally modifying magnetic field update equations and the virtual iterative electric fields accordlng to the complexity of tile slot fringe fields. The mutual coupling between two edge inclined slots can also be analyzed by ILC-FDTD effectively. 展开更多
关键词 Improved Locally Conformal finite-difference time-domain (ILC-FDTD) method Edge inclined slots
下载PDF
Finite-difference time-domain modeling of curved material interfaces by using boundary condition equations method
10
作者 卢佳 周怀春 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期198-206,共9页
To deal with the staircase approximation problem in the standard finite-difference time-domain(FDTD) simulation,the two-dimensional boundary condition equations(BCE) method is proposed in this paper.In the BCE met... To deal with the staircase approximation problem in the standard finite-difference time-domain(FDTD) simulation,the two-dimensional boundary condition equations(BCE) method is proposed in this paper.In the BCE method,the standard FDTD algorithm can be used as usual,and the curved surface is treated by adding the boundary condition equations.Thus,while maintaining the simplicity and computational efficiency of the standard FDTD algorithm,the BCE method can solve the staircase approximation problem.The BCE method is validated by analyzing near field and far field scattering properties of the PEC and dielectric cylinders.The results show that the BCE method can maintain a second-order accuracy by eliminating the staircase approximation errors.Moreover,the results of the BCE method show good accuracy for cylinder scattering cases with different permittivities. 展开更多
关键词 finite-difference time-domain curved surface staircase error boundary condition equation
下载PDF
USE OF FINITE-DIFFERENCE TIME-DOMAIN METHOD FOR CALCULATING EM ABSORPTION IN LOSSY DIELECTRIC SCATTERER
11
作者 王长清 陈金元 《Journal of Electronics(China)》 1991年第4期357-362,共6页
The problem for calculating EM energy absorption by lossy dielectric scatterer ir-radiated by plane wave are discussed.The factors affecting the accuracy of computation arediscussed.The calculated results of EM energy... The problem for calculating EM energy absorption by lossy dielectric scatterer ir-radiated by plane wave are discussed.The factors affecting the accuracy of computation arediscussed.The calculated results of EM energy absorption and its distribution in homogeneousand layered homogenous lossy dielectric spheres are presented,and a comparison of these resultswith analytical solution is given.The calculation is carried out for dielectric cylinder on conduct-ing ground as well,and the results are compared with the image theory.All the computationsshew that the finite-difference time-domain method can give satisfactory results. 展开更多
关键词 LOSSY DIELECTRIC SCATTERER Electromagnetic ABSORPTION finite-difference timedomain method
下载PDF
An efficient absorbing boundary for finite-difference time-domain field modelling in acoustics
12
作者 WANG Shuozhong (Shanghai University Shanghai 200072)Received 《Chinese Journal of Acoustics》 1997年第2期121-134,共14页
A highly efficient absorbing boundary condition suitable for use in the finitedtherence time-domain (FDTD) modelling of acoustic fields is presented in this paper. The new method seeks a least square esthoate of a tra... A highly efficient absorbing boundary condition suitable for use in the finitedtherence time-domain (FDTD) modelling of acoustic fields is presented in this paper. The new method seeks a least square esthoate of a transfer matrix for field components near truncating boundaries by matrir pseud-inversion. The proposed absorbing boundary is considerably more effective than most ekisting ones. The method is also computationally econondcal and robust.The performance of the new method is shown by numerical experiments on a point-source radiation problem, a wedge dimaction problem, and a scattering problem in which a plane wave is scattered by a circular cylinder. 展开更多
关键词 TIME An efficient absorbing boundary for finite-difference time-domain field modelling in acoustics
原文传递
A stable staggered-grid finite-difference scheme for acoustic modeling beyond conventional stability limit
13
作者 Jing-Yi Xu Yang Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期182-194,共13页
Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these met... Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these methods are inevitably limited by the maximum Courant-Friedrichs-Lewy(CFL)numbers,making them unstable when modeling with large time sampling intervals or small grid spacings.To solve this problem,we extend a stable SGFD scheme by controlling SGFD dispersion relations and maximizing the maximum CFL numbers.First,to improve modeling stability,we minimize the error between the FD dispersion relation and the exact relation in the given wave-number region,and make the FD dispersion approach a given function outside the given wave-number area,thus breaking the conventional limits of the maximum CFL number.Second,to obtain high modeling accuracy,we use the SGFD scheme based on the Remez algorithm to compute the FD coefficients.In addition,the hybrid absorbing boundary condition is adopted to suppress boundary reflections and we find a suitable weighting coefficient for the proposed scheme.Theoretical derivation and numerical modeling demonstrate that the proposed scheme can maintain high accuracy in the modeling process and the value of the maximum CFL number of the proposed scheme can exceed that of the conventional SGFD scheme when adopting a small maximum effective wavenumber,indicating that the proposed scheme improves stability during the modeling. 展开更多
关键词 Acoustic wave Staggered-grid finite-difference(SGFD) modeling Courant-friedrichs-lewy(CFL)number Stability
下载PDF
An adaptive finite-difference method for seismic traveltime modeling based on 3D eikonal equation
14
作者 Bao-Ping Qiao Qing-Qing Li +2 位作者 Wei-Guang He Dan Zhao Qu-Bo Wu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期195-205,共11页
3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic m... 3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications. 展开更多
关键词 3D eikonal equation Accurate traveltimes Global fast sweeping 3D inhomogeneous media Adaptive finite-difference method
下载PDF
Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method 被引量:1
15
作者 Fang Gang Ba Jing +2 位作者 Liu Xin-xin Zhu Kun Liu Guo-Chang 《Applied Geophysics》 SCIE CSCD 2017年第2期258-269,323,共13页
Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time st... Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps. 展开更多
关键词 symplectic algorithm Fourier finite-difference Hamiltonian system seismic modeling ANISOTROPIC
下载PDF
Viscoacoustic prestack reverse time migration based onthe optimal time-space domain high-order finite-difference method 被引量:7
16
作者 赵岩 刘洋 任志明 《Applied Geophysics》 SCIE CSCD 2014年第1期50-62,116,共14页
Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of t... Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of the steps of RTM is solving thewave equation and extrapolating the wave field forward and backward; therefore, solvingaccurately and efficiently the wave equation affects the imaging results and the efficiencyof RTM. In this study, we use the optimal time-space domain dispersion high-order finite-difference (FD) method to solve the viscoacoustic wave equation. Dispersion analysis andnumerical simulations show that the optimal time-space domain FD method is more accurateand suppresses the numerical dispersion. We use hybrid absorbing boundary conditions tohandle the boundary reflection. We also use source-normalized cross-correlation imagingconditions for migration and apply Laplace filtering to remove the low-frequency noise.Numerical modeling suggests that the viscoacoustic wave equation RTM has higher imagingresolution than the acoustic wave equation RTM when the viscosity of the subsurface isconsidered. In addition, for the wave field extrapolation, we use the adaptive variable-lengthFD operator to calculate the spatial derivatives and improve the computational efficiencywithout compromising the accuracy of the numerical solution. 展开更多
关键词 REVERSE time migration Viscoacoustic Optimization Adaptive Time-spacedomain finite-difference
下载PDF
Three-dimensional acoustic wave equation modeling based on the optimal finite-difference scheme 被引量:4
17
作者 蔡晓慧 刘洋 +4 位作者 任志明 王建民 陈志德 陈可洋 王成 《Applied Geophysics》 SCIE CSCD 2015年第3期409-420,469,共13页
Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a... Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods. 展开更多
关键词 3D acoustic wave equation optimal finite-difference forward modeling reversetime migration
下载PDF
Finite-difference numerical modeling with even-order accuracy in two-phase anisotropic media 被引量:4
18
作者 刘洋 魏修 《Applied Geophysics》 SCIE CSCD 2008年第2期107-114,共8页
To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of ... To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of any-order derivatives derived from Taylor series expansion. Then, a finite-difference numerical modeling method with any evenorder accuracy is utilized to simulate seismic wave propagation in two-phase anisotropic media. Results indicate that modeling accuracy improves with the increase of difference accuracy order number. It is essential to find the optimal order number, grid size, and time step to balance modeling precision and computational complexity. Four kinds of waves, static mode in the source point, SV wave cusps, reflection and transmission waves are observed in two-phase anisotropic media through modeling. 展开更多
关键词 two-phase anisotropy finite-difference any even-order accuracy numerical modeling wave equations
下载PDF
Finite-difference modeling of surface waves in poroelastic media and stress mirror conditions
19
作者 张煜 平萍 张双喜 《Applied Geophysics》 SCIE CSCD 2017年第1期105-114,190,191,共12页
During seismic wave propagation on a free surface, a strong material contrast boundary develops in response to interference by P- and S- waves to create a surface-wave phenomenon. To accurately determine the effects o... During seismic wave propagation on a free surface, a strong material contrast boundary develops in response to interference by P- and S- waves to create a surface-wave phenomenon. To accurately determine the effects of this interface on surface-wave propagation, the boundary conditions must be accurately modeled. In this paper, we present a numerical approach based on the dynamic poroelasticity for a space–time-domain staggered-grid finite-difference simulation in porous media that contain a free-surface boundary. We propose a generalized stess mirror formulation of the free-surface boundary for solids and fluids in porous media for the grid mesh on which lays the free-surface plane. Its analog is that used for elastic media, which is suitable for precise and stable Rayleigh-type surface-wave modeling. The results of our analysis of first kind of Rayleigh (R1) waves obtained by this model demonstrate that the discretization of the mesh in a similar way to that for elastic media can realize stable numerical solutions with acceptable precision. We present numerical examples demonstrating the efficiency and accuracy of our proposed method. 展开更多
关键词 SURFACE-WAVE POROELASTIC finite-difference DISPERSION
下载PDF
2-D elastic wave modeling with frequency-space 25-point finite-difference operators 被引量:9
20
作者 Liao Jianping Wang Huazhong Ma Zaitian 《Applied Geophysics》 SCIE CSCD 2009年第3期259-266,300,共9页
Numerical simulation in the frequency-space domain has inherent advantages, such as: it is possible to simulate wave propagation from multiple sources simultaneously; there are no cumulative errors; only the interest... Numerical simulation in the frequency-space domain has inherent advantages, such as: it is possible to simulate wave propagation from multiple sources simultaneously; there are no cumulative errors; only the interesting frequencies can be selected; and it is more suitable for wave propagation in viscoelastic media. The only obstacle to using the method is the requirement of huge computer storage. We extend the compressed format for storing the coefficient matrix. It can reduce the required computer storage dramatically. We get the optimal coefficients by least-squares method to suppress the numerical dispersion and adopt the perfectly matched layer (PML) boundary conditions to eliminate the artificial boundary reflections. Using larger grid intervals decreases computer storage requirements and provides high computational efficiency. Numerical experiments demonstrate that these means are economic and effective, providing a good basis for elastic wave imaging and inversion. 展开更多
关键词 compressed storage frequency-space domain twenty-five point finite-difference optimal coefficients PML
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部