This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global ...This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global finite-time consensus for both single-integrator and double-integrator multi-agent systems with leaderless undirected and leader-following directed commu-nication topologies.These new protocols not only provide an explicit upper-bound estimate for the settling time,but also have a user-prescribed bounded control level.In addition,compared to some existing results based on the saturation function,the pro-posed approach considerably simplifies the protocol design and the stability analysis.Illustrative examples and an application demonstrate the effectiveness of the proposed protocols.展开更多
Finite-time consensus problem of the leader-following multi-agent system under switching network topologies is studied in this paper. Based on the graph theory, matrix theory, homogeneity with dilation, and LaSalle's...Finite-time consensus problem of the leader-following multi-agent system under switching network topologies is studied in this paper. Based on the graph theory, matrix theory, homogeneity with dilation, and LaSalle's invariance principle, the control protocol of each agent using local information is designed, and the detailed analysis of the leader- following finite-time consensus is provided. Some examples and simulation results are given to illustrate the effectiveness of the obtained theoretical results.展开更多
We investigate the finite-time consensus problem for heterogeneous multi-agent systems composed of first-order and second-order agents.A novel continuous nonlinear distributed consensus protocol is constructed,and fin...We investigate the finite-time consensus problem for heterogeneous multi-agent systems composed of first-order and second-order agents.A novel continuous nonlinear distributed consensus protocol is constructed,and finite-time consensus criteria are obtained for the heterogeneous multi-agent systems.Compared with the existing results,the stationary and kinetic consensuses of the heterogeneous multi-agent systems can be achieved in a finite time respectively.Moreover,the leader can be a first-order or a second-order integrator agent.Finally,some simulation examples are employed to verify the efficiency of the theoretical results.展开更多
The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the un...The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the unique solvability result for the first-order linear hyperbolic PDE are used to obtain some sufficient conditions for ensuring the finite-time consensus of the leaderless and leader-following MASs driven by first-order linear hyperbolic PDEs.Finally,two numerical examples are provided to verify the effectiveness of the proposed methods.展开更多
In this paper, the finite-time consensus of a leader-following multi-agent network with non-identical nonlinear dynamics and time-varying topologies is investigated. All the agents, especially the leaders, have non-id...In this paper, the finite-time consensus of a leader-following multi-agent network with non-identical nonlinear dynamics and time-varying topologies is investigated. All the agents, especially the leaders, have non-identical and nonlinear dynamics. According to the algebraic graph theory, Lyapunov stability theory and Kronecker product, a control strategy strategy is established to guarantee the finite-time consensus of multi-agent network with multiple leaders. Furthermore, several numerical simulations illustrate the effectiveness and feasibility of the proposed method.展开更多
As all generators are distributed in different areas among large scale power systems,the cooperative manipulation of the multi-generator system cannot operate well without consideration of the distance information of ...As all generators are distributed in different areas among large scale power systems,the cooperative manipulation of the multi-generator system cannot operate well without consideration of the distance information of the generators.A distributed step-by-step finite-time consensus scheme for the heterogeneous battery energy storage system(BESS)is proposed in this paper,where the coordinated consensus can come into reality within a limited time,which is appealing for the electrical engineering community.To be concrete,at first,all BESSs are classified into several clusters according to their locations,and in each cluster,there is an active leader in charge of information receiving from outside.Then,in order to coordinate the multi BESSs,five inputs,which are function oriented,were used to achieve energy level balancing,active/reactive power sharing,and the consensus of voltage and frequency of the multi BESSs.Furthermore,the frequency and voltage restoration to the nominal values of the main grid were made possible by the introduction of a virtual leader,which is actually an external leader.Compared with the centralized methods,this control scheme is entirely distributed,and each BESS only utilizes the information of its own and its neighbors.In addition,this control is robust to the load perturbation and the plug-and-play of the communication topology.Finally,some simulation experiments are executed on the modified IEEE 57-bus system to verify the suggested scheme.展开更多
This paper investigates the fnite-time consensus problem of multi-agent systems with single and double integrator dynamics,respectively.Some novel nonlinear protocols are constructed for frst-order and second-order le...This paper investigates the fnite-time consensus problem of multi-agent systems with single and double integrator dynamics,respectively.Some novel nonlinear protocols are constructed for frst-order and second-order leader-follower multi-agent systems,respectively.Based on the fnite-time control technique,the graph theory and Lyapunov direct method,some theoretical results are proposed to ensure that the states of all the follower agents can converge to its leader agent s state in fnite time.Finally,some simulation results are presented to illustrate the efectiveness of our theoretical results.展开更多
This paper considers the finite-time consensus problem for a stochastic multi-species system. First, we give out a nonlinear consensus protocol for the multi-species system with Brownian motion, and propose the defini...This paper considers the finite-time consensus problem for a stochastic multi-species system. First, we give out a nonlinear consensus protocol for the multi-species system with Brownian motion, and propose the definition of finite-time consensus in probability. Second, we prove that the multi-species system can achieve finite-time consensus in probability with different proper protocols by use of graph theory, stochastic Lyapunov function method and probability theory. Finally, some simulations are provided to illustrate the effectiveness of the theoretical results.展开更多
This paper investigates fault-tolerant finite-time dynamical consensus problems of double-integrator multi-agent systems(MASs)with partial agents subject to synchronous self-sensing function failure(SSFF).A strategy o...This paper investigates fault-tolerant finite-time dynamical consensus problems of double-integrator multi-agent systems(MASs)with partial agents subject to synchronous self-sensing function failure(SSFF).A strategy of recovering the connectivity of network topology among normal agents based on multi-hop communication and a fault-tolerant finitetime dynamical consensus protocol with time-varying gains are proposed to resist synchronous SSFF.It is proved that double-integrator MASs with partial agents subject to synchronous SSFF using the proposed strategy of network topology connectivity recovery and fault-tolerant finite-time dynamical consensus protocol with the proper time-varying gains can achieve finite-time dynamical consensus.Numerical simulations are given to illustrate the effectiveness of the theoretical results.展开更多
A fnite.-time consensus protocol is proposed for multi -dimensional multi- agent systems, using direction peserving signumcontrols. Flipp solutions and nonsmooh analysis tehniques are adopted to handle discontinuities...A fnite.-time consensus protocol is proposed for multi -dimensional multi- agent systems, using direction peserving signumcontrols. Flipp solutions and nonsmooh analysis tehniques are adopted to handle discontinuities. Suficient and ncessaryconditions are provided to guarantee infinte time convergence and boundedness of the solutions. It turns out that the numberof agents which have cotinuous contol law plays an ssenan role in fnite-tine conerence In adidio it is shown thatthe unit bals itoduced bylp, norms. where p ∈[1,∞] , are inariat for the closed lop.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guar...In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples.展开更多
This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theor...This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theory, some new conditions for the nonlinear Lurie multi-agent systems reaching bipartite leaderless consensus and bipartite tracking consensus are presented. Compared with the traditional methods, this approach degrades the dimensions of the conditions, eliminates some restrictions of the system matrix, and extends the range of the nonlinear function. Finally, two numerical examples are provided to illustrate the efficiency of our results.展开更多
Blockchain has been widely used in finance,the Internet of Things(IoT),supply chains,and other scenarios as a revolutionary technology.Consensus protocol plays a vital role in blockchain,which helps all participants t...Blockchain has been widely used in finance,the Internet of Things(IoT),supply chains,and other scenarios as a revolutionary technology.Consensus protocol plays a vital role in blockchain,which helps all participants to maintain the storage state consistently.However,with the improvement of network environment complexity and system scale,blockchain development is limited by the performance,security,and scalability of the consensus protocol.To address this problem,this paper introduces the collaborative filtering mechanism commonly used in the recommendation system into the Practical Byzantine Fault Tolerance(PBFT)and proposes a Byzantine fault-tolerant(BFT)consensus protocol based on collaborative filtering recommendation(CRBFT).Specifically,an improved collaborative filtering recommendation method is designed to use the similarity between a node’s recommendation opinions and those of the recommender as a basis for determining whether to adopt the recommendation opinions.This can amplify the recommendation voice of good nodes,weaken the impact of cunningmalicious nodes on the trust value calculation,andmake the calculated resultsmore accurate.In addition,the nodes are given voting power according to their trust value,and a weight randomelection algorithm is designed and implemented to reduce the risk of attack.The experimental results show that CRBFT can effectively eliminate various malicious nodes and improve the performance of blockchain systems in complex network environments,and the feasibility of CRBFT is also proven by theoretical analysis.展开更多
Bruton’s tyrosine kinase inhibitors(BTKis)have revolutionized the treatment of B-cell lymphomas.However,safety issues related to the use of BTKis may hinder treatment continuity and further affect clinical efficacy.A...Bruton’s tyrosine kinase inhibitors(BTKis)have revolutionized the treatment of B-cell lymphomas.However,safety issues related to the use of BTKis may hinder treatment continuity and further affect clinical efficacy.A comprehensive and systematic expert consensus from a pharmacological perspective is lacking for safety issues associated with BTKi treatment.A multidisciplinary consensus working group was established,comprising 35 members from the fields of hematology,cardiovascular disease,cardio-oncology,clinical pharmacy,and evidencebased medicine.This evidence-based expert consensus was formulated using an evidence-based approach and the Delphi method.The Joanna Briggs Institute Critical Appraisal(JBI)tool and Grading of Recommendations Assessment,Development,and Evaluation(GRADE)approach were used to rate the quality of evidence and grade the strength of recommendations,respectively.This consensus provides practical recommendations for BTKis medication based on nine aspects within three domains,including the management of common adverse drug events such as bleeding,cardiovascular events,and hematological toxicity,as well as the management of drug-drug interactions and guidance for special populations.This multidisciplinary expert consensus could contribute to promoting a multi-dimensional,comprehensive and standardized management of BTKis.展开更多
This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utiliz...This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H∞ performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.展开更多
This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consens...This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems.展开更多
Bitcoin is widely used as the most classic electronic currency for various electronic services such as exchanges,gambling,marketplaces,and also scams such as high-yield investment projects.Identifying the services ope...Bitcoin is widely used as the most classic electronic currency for various electronic services such as exchanges,gambling,marketplaces,and also scams such as high-yield investment projects.Identifying the services operated by a Bitcoin address can help determine the risk level of that address and build an alert model accordingly.Feature engineering can also be used to flesh out labeled addresses and to analyze the current state of Bitcoin in a small way.In this paper,we address the problem of identifying multiple classes of Bitcoin services,and for the poor classification of individual addresses that do not have significant features,we propose a Bitcoin address identification scheme based on joint multi-model prediction using the mapping relationship between addresses and entities.The innovation of the method is to(1)Extract as many valuable features as possible when an address is given to facilitate the multi-class service identification task.(2)Unlike the general supervised model approach,this paper proposes a joint prediction scheme for multiple learners based on address-entity mapping relationships.Specifically,after obtaining the overall features,the address classification and entity clustering tasks are performed separately,and the results are subjected to graph-basedmaximization consensus.The final result ismade to baseline the individual address classification results while satisfying the constraint of having similarly behaving entities as far as possible.By testing and evaluating over 26,000 Bitcoin addresses,our feature extraction method captures more useful features.In addition,the combined multi-learner model obtained results that exceeded the baseline classifier reaching an accuracy of 77.4%.展开更多
This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel...This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel,is developed to address the inherent limitations of both SFSs and the traditional Delphi technique,particularly in uncertain,complex scenarios.In such contexts,the accuracy of expert knowledge and the confidence in their judgments are pivotal considerations.This study provides the fundamental operational principles and aggregation operators associated with SFSs and Z-numbers,encompassing weighted geometric and arithmetic operators alongside fully developed operators tailored for SFZs numbers.Subsequently,a case study and comparative analysis are conducted to illustrate the practicality and effectiveness of the proposed operators and methodologies.Integrating the PHI model with SFZs numbers represents a significant advancement in decision-making frameworks reliant on expert input.Further,this combination serves as a comprehensive tool for decision-makers,enabling them to achieve heightened levels of consensus while concurrently assessing the reliability of expert contributions.The case study results demonstrate the PHI model’s utility in resolving complex decision-making scenarios,showcasing its ability to improve consensus-building processes and enhance decision outcomes.Additionally,the comparative analysis highlights the superiority of the integrated approach over traditional methodologies,underscoring its potential to revolutionize decision-making practices in uncertain environments.展开更多
基金supported by the National Natural Science Foundation of China(62073019)。
文摘This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global finite-time consensus for both single-integrator and double-integrator multi-agent systems with leaderless undirected and leader-following directed commu-nication topologies.These new protocols not only provide an explicit upper-bound estimate for the settling time,but also have a user-prescribed bounded control level.In addition,compared to some existing results based on the saturation function,the pro-posed approach considerably simplifies the protocol design and the stability analysis.Illustrative examples and an application demonstrate the effectiveness of the proposed protocols.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60834002,60873021,and 61004042)the Youth Science Research Project of Chongqing University of Posts and Telecommunications,China(Grant No.A2012-82)the Doctor Start-up Foundation of Chongqing University of Posts and Telecommunications,China(Grant No.A2012-23)
文摘Finite-time consensus problem of the leader-following multi-agent system under switching network topologies is studied in this paper. Based on the graph theory, matrix theory, homogeneity with dilation, and LaSalle's invariance principle, the control protocol of each agent using local information is designed, and the detailed analysis of the leader- following finite-time consensus is provided. Some examples and simulation results are given to illustrate the effectiveness of the obtained theoretical results.
基金Project supported by the National Basic Research Program of China (Grant No. 2010CB731800)the National Natural Science Foundation of China (Grant Nos. 60934003 and 61074065)the Natural Science Foundation of Hebei Province,China (Grant Nos. F2012203119 and 1208085MF111)
文摘We investigate the finite-time consensus problem for heterogeneous multi-agent systems composed of first-order and second-order agents.A novel continuous nonlinear distributed consensus protocol is constructed,and finite-time consensus criteria are obtained for the heterogeneous multi-agent systems.Compared with the existing results,the stationary and kinetic consensuses of the heterogeneous multi-agent systems can be achieved in a finite time respectively.Moreover,the leader can be a first-order or a second-order integrator agent.Finally,some simulation examples are employed to verify the efficiency of the theoretical results.
基金the National Natural Science Foundation of China(Nos.11671282 and 12171339)。
文摘The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the unique solvability result for the first-order linear hyperbolic PDE are used to obtain some sufficient conditions for ensuring the finite-time consensus of the leaderless and leader-following MASs driven by first-order linear hyperbolic PDEs.Finally,two numerical examples are provided to verify the effectiveness of the proposed methods.
基金Supported by National Basic Research Program of China (973 Program) (2010CB731800), National Natural Science Foundation of China (60934003, 61074065), Key Project for Natural Science Research of Hebei Education Department (ZD200908), and the Doctor Foundation of Northeastern University at Qinhuangdao(XNB201507)
基金Supported by the National Natural Science Foundation of China(6147333861304164)
文摘In this paper, the finite-time consensus of a leader-following multi-agent network with non-identical nonlinear dynamics and time-varying topologies is investigated. All the agents, especially the leaders, have non-identical and nonlinear dynamics. According to the algebraic graph theory, Lyapunov stability theory and Kronecker product, a control strategy strategy is established to guarantee the finite-time consensus of multi-agent network with multiple leaders. Furthermore, several numerical simulations illustrate the effectiveness and feasibility of the proposed method.
基金supported in part by the National Natural Science Foundation of China(61340041,61374079 and 61903126)the Natural Science Foundation of Henan Province(182300410112).
文摘As all generators are distributed in different areas among large scale power systems,the cooperative manipulation of the multi-generator system cannot operate well without consideration of the distance information of the generators.A distributed step-by-step finite-time consensus scheme for the heterogeneous battery energy storage system(BESS)is proposed in this paper,where the coordinated consensus can come into reality within a limited time,which is appealing for the electrical engineering community.To be concrete,at first,all BESSs are classified into several clusters according to their locations,and in each cluster,there is an active leader in charge of information receiving from outside.Then,in order to coordinate the multi BESSs,five inputs,which are function oriented,were used to achieve energy level balancing,active/reactive power sharing,and the consensus of voltage and frequency of the multi BESSs.Furthermore,the frequency and voltage restoration to the nominal values of the main grid were made possible by the introduction of a virtual leader,which is actually an external leader.Compared with the centralized methods,this control scheme is entirely distributed,and each BESS only utilizes the information of its own and its neighbors.In addition,this control is robust to the load perturbation and the plug-and-play of the communication topology.Finally,some simulation experiments are executed on the modified IEEE 57-bus system to verify the suggested scheme.
基金supported by National Basic Research Program of China (973 Program) (No.2010CB731800)National Natural Science Foundation of China (Nos.60934003 and 61074065)Natural Science Foundation of Hebei Province (No.F2012203119)
文摘This paper investigates the fnite-time consensus problem of multi-agent systems with single and double integrator dynamics,respectively.Some novel nonlinear protocols are constructed for frst-order and second-order leader-follower multi-agent systems,respectively.Based on the fnite-time control technique,the graph theory and Lyapunov direct method,some theoretical results are proposed to ensure that the states of all the follower agents can converge to its leader agent s state in fnite time.Finally,some simulation results are presented to illustrate the efectiveness of our theoretical results.
基金We would like to thank the editor and referee for their very helpful comments and suggestions which improve this paper significantly. This research is supported by the National Natural Science Foundation of China (Nos. 11461053 and 11261043) (China), the School Foundation of Ningxia University (No. ZR1315) (China).
文摘This paper considers the finite-time consensus problem for a stochastic multi-species system. First, we give out a nonlinear consensus protocol for the multi-species system with Brownian motion, and propose the definition of finite-time consensus in probability. Second, we prove that the multi-species system can achieve finite-time consensus in probability with different proper protocols by use of graph theory, stochastic Lyapunov function method and probability theory. Finally, some simulations are provided to illustrate the effectiveness of the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant No.61876073)the Fundamental Research Funds for the Central Universities of China(Grant No.JUSRP21920)
文摘This paper investigates fault-tolerant finite-time dynamical consensus problems of double-integrator multi-agent systems(MASs)with partial agents subject to synchronous self-sensing function failure(SSFF).A strategy of recovering the connectivity of network topology among normal agents based on multi-hop communication and a fault-tolerant finitetime dynamical consensus protocol with time-varying gains are proposed to resist synchronous SSFF.It is proved that double-integrator MASs with partial agents subject to synchronous SSFF using the proposed strategy of network topology connectivity recovery and fault-tolerant finite-time dynamical consensus protocol with the proper time-varying gains can achieve finite-time dynamical consensus.Numerical simulations are given to illustrate the effectiveness of the theoretical results.
文摘A fnite.-time consensus protocol is proposed for multi -dimensional multi- agent systems, using direction peserving signumcontrols. Flipp solutions and nonsmooh analysis tehniques are adopted to handle discontinuities. Suficient and ncessaryconditions are provided to guarantee infinte time convergence and boundedness of the solutions. It turns out that the numberof agents which have cotinuous contol law plays an ssenan role in fnite-tine conerence In adidio it is shown thatthe unit bals itoduced bylp, norms. where p ∈[1,∞] , are inariat for the closed lop.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金supported by the National Natural Science Foundation of China (62073015,62173036,62122014)。
文摘In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples.
基金Project supported by the National Natural Science Foundation of China(Grant No.62363005)the Jiangxi Provincial Natural Science Foundation(Grant Nos.20161BAB212032 and 20232BAB202034)the Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant Nos.GJJ202602 and GJJ202601)。
文摘This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theory, some new conditions for the nonlinear Lurie multi-agent systems reaching bipartite leaderless consensus and bipartite tracking consensus are presented. Compared with the traditional methods, this approach degrades the dimensions of the conditions, eliminates some restrictions of the system matrix, and extends the range of the nonlinear function. Finally, two numerical examples are provided to illustrate the efficiency of our results.
基金supported by the National Natural Science Foundation of China(Grant No.62102449)awarded to W.J.Wang.
文摘Blockchain has been widely used in finance,the Internet of Things(IoT),supply chains,and other scenarios as a revolutionary technology.Consensus protocol plays a vital role in blockchain,which helps all participants to maintain the storage state consistently.However,with the improvement of network environment complexity and system scale,blockchain development is limited by the performance,security,and scalability of the consensus protocol.To address this problem,this paper introduces the collaborative filtering mechanism commonly used in the recommendation system into the Practical Byzantine Fault Tolerance(PBFT)and proposes a Byzantine fault-tolerant(BFT)consensus protocol based on collaborative filtering recommendation(CRBFT).Specifically,an improved collaborative filtering recommendation method is designed to use the similarity between a node’s recommendation opinions and those of the recommender as a basis for determining whether to adopt the recommendation opinions.This can amplify the recommendation voice of good nodes,weaken the impact of cunningmalicious nodes on the trust value calculation,andmake the calculated resultsmore accurate.In addition,the nodes are given voting power according to their trust value,and a weight randomelection algorithm is designed and implemented to reduce the risk of attack.The experimental results show that CRBFT can effectively eliminate various malicious nodes and improve the performance of blockchain systems in complex network environments,and the feasibility of CRBFT is also proven by theoretical analysis.
基金supported by the National Natural Science Foundation of China(NSFC)(No.72074005 and No.72304007)the special fund of the National Clinical Key Specialty Construction Program,P.R.China(2023).
文摘Bruton’s tyrosine kinase inhibitors(BTKis)have revolutionized the treatment of B-cell lymphomas.However,safety issues related to the use of BTKis may hinder treatment continuity and further affect clinical efficacy.A comprehensive and systematic expert consensus from a pharmacological perspective is lacking for safety issues associated with BTKi treatment.A multidisciplinary consensus working group was established,comprising 35 members from the fields of hematology,cardiovascular disease,cardio-oncology,clinical pharmacy,and evidencebased medicine.This evidence-based expert consensus was formulated using an evidence-based approach and the Delphi method.The Joanna Briggs Institute Critical Appraisal(JBI)tool and Grading of Recommendations Assessment,Development,and Evaluation(GRADE)approach were used to rate the quality of evidence and grade the strength of recommendations,respectively.This consensus provides practical recommendations for BTKis medication based on nine aspects within three domains,including the management of common adverse drug events such as bleeding,cardiovascular events,and hematological toxicity,as well as the management of drug-drug interactions and guidance for special populations.This multidisciplinary expert consensus could contribute to promoting a multi-dimensional,comprehensive and standardized management of BTKis.
基金Project supported by the National Natural Science Foundation of China(Grant No.62303016)the Research and Development Project of Engineering Research Center of Biofilm Water Purification and Utilization Technology of the Ministry of Education of China(Grant No.BWPU2023ZY02)+1 种基金the University Synergy Innovation Program of Anhui Province,China(Grant No.GXXT-2023-020)the Key Project of Natural Science Research in Universities of Anhui Province,China(Grant No.2024AH050171).
文摘This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H∞ performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.
基金supported in part by the National Natural Science Foundation of China (NSFC)(61703086, 61773106)the IAPI Fundamental Research Funds (2018ZCX27)
文摘This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems.
基金sponsored by the National Natural Science Foundation of China Nos.62172353,62302114 and U20B2046Future Network Scientific Research Fund Project No.FNSRFP-2021-YB-48Innovation Fund Program of the Engineering Research Center for Integration and Application of Digital Learning Technology of Ministry of Education No.1221045。
文摘Bitcoin is widely used as the most classic electronic currency for various electronic services such as exchanges,gambling,marketplaces,and also scams such as high-yield investment projects.Identifying the services operated by a Bitcoin address can help determine the risk level of that address and build an alert model accordingly.Feature engineering can also be used to flesh out labeled addresses and to analyze the current state of Bitcoin in a small way.In this paper,we address the problem of identifying multiple classes of Bitcoin services,and for the poor classification of individual addresses that do not have significant features,we propose a Bitcoin address identification scheme based on joint multi-model prediction using the mapping relationship between addresses and entities.The innovation of the method is to(1)Extract as many valuable features as possible when an address is given to facilitate the multi-class service identification task.(2)Unlike the general supervised model approach,this paper proposes a joint prediction scheme for multiple learners based on address-entity mapping relationships.Specifically,after obtaining the overall features,the address classification and entity clustering tasks are performed separately,and the results are subjected to graph-basedmaximization consensus.The final result ismade to baseline the individual address classification results while satisfying the constraint of having similarly behaving entities as far as possible.By testing and evaluating over 26,000 Bitcoin addresses,our feature extraction method captures more useful features.In addition,the combined multi-learner model obtained results that exceeded the baseline classifier reaching an accuracy of 77.4%.
文摘This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel,is developed to address the inherent limitations of both SFSs and the traditional Delphi technique,particularly in uncertain,complex scenarios.In such contexts,the accuracy of expert knowledge and the confidence in their judgments are pivotal considerations.This study provides the fundamental operational principles and aggregation operators associated with SFSs and Z-numbers,encompassing weighted geometric and arithmetic operators alongside fully developed operators tailored for SFZs numbers.Subsequently,a case study and comparative analysis are conducted to illustrate the practicality and effectiveness of the proposed operators and methodologies.Integrating the PHI model with SFZs numbers represents a significant advancement in decision-making frameworks reliant on expert input.Further,this combination serves as a comprehensive tool for decision-makers,enabling them to achieve heightened levels of consensus while concurrently assessing the reliability of expert contributions.The case study results demonstrate the PHI model’s utility in resolving complex decision-making scenarios,showcasing its ability to improve consensus-building processes and enhance decision outcomes.Additionally,the comparative analysis highlights the superiority of the integrated approach over traditional methodologies,underscoring its potential to revolutionize decision-making practices in uncertain environments.