Purpose-The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry resting on soft clay and to exp...Purpose-The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry resting on soft clay and to explore the effect of load amplitude,load frequency,presence of geogrid layer in ballast layer and ballast layer thickness on the behavior of track system.These variables are studied both experimentally and numerically.This paper examines the effect of geogrid reinforced ballast laying on a layer of clayey soil as a subgrade layer,where a half full scale railway tests are conducted as well as a theoretical analysis is performed.Design/methodologylapproach-The experimental tests work consists of laboratory model tests to investigate the reduction in the compressibility and stress distribution induced in soft clay under a ballast railway reinforced by geogrid reinforcement subjected to dynamic load.Experimental model based on an approximate half scale for general rail track engineering practice is adopted in this study which is used in Iraqi railways.The investigated parameters are load amplitude,load frequency and presence of geogrid reinforcement layer.A half fuli-scale railway was constructed for carrying out the tests,which consists of two rails 800 mm in iength with three w00den sleepers(900 mm×90 mm×90 mm).The ballast was overlying 500 mm thick clay layer.The tests were carried out with and without geogrid reinforcement,the tests were carried out in a well tied steel box of 1.5 m length X 1 m width X 1 m height.A series of laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid.Settlement in ballast and clay,was measured in reinforced and unreinforced ballast cases.In addition to the laboratory tests,the application of numerical analysis was made by using the finite element program PLAXIS 3D 2013.Findings-It was concluded that the settlement increased with increasing the simulated train load amplitude,there is a sharp increase in settlement up to the cycle 500 and after that,there is a gradual increase to level out between,2,500 and 4,500 cycles depending on the load frequency.There is a little increase in the induced settlement when the load amplitude increased from 0.5 to i ton,but it is higher when the load amplitude increased to 2 ton,the increase in settlement depends on the geogrid existence and the other studied parameters.Both experimental and numerical results showed the same behavior.The effect of load frequency on the settlement ratio is almost constant after 500 cycles.In general,for reinforced cases,the effect of load frequency on the settlement ratio is very small ranging between 0.5 and 2%compared with the unreinforcedcase.Originalitylvalue-Increasing the ballast layer thickness from 20 cm to 30 cm leads to decrease the settlement by about 50%.This ascertains the efficiency of ballast in spreading the waves induced by the track.展开更多
Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear c...Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data.展开更多
To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direc...To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direct current method, we propose a new mesh refinement and recoarsement method for a two-dimensional point source. We introduce the mesh refinement and mesh recoarsement into the traditional structured mesh subdivision. By refining the horizontal grids, the singularity owing to the point source is minimized and the topography is simulated. By recoarsening the horizontal grids, the number of grid cells is reduced significantly and computational efficiency is improved. Model tests show that the proposed method solves the singularity problem and reduces the number of grid cells by 80% compared to the uniform grid refinement.展开更多
In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images ...In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed threedimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosingdiseases related to anatomical structure and function of the upper airway.展开更多
A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating...A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating various vehicle motions:stationary and non-stationary(i.e.in acceleration or deceleration mode).Analysis of the results indicated the following items.1) It is critical to use the vertical TPCP as the design control criteria for the tensile strains at the bottom of the AC layer when the base layer modulus is lower in magnitude(e.g.≤400 MPa);however,when the base layer modulus is higher in magnitude(e.g.≥7 000 MPa),the horizontal TPCP and the tensile strains in the X-direction at the surface of the AC layer should also be considered as part of the design response criteria.2) The definition of "overload" needs to be revised to include tire pressure over-inflation,i.e.,a vehicle should be considered to be overloaded if the wheel load exceeds the specification and/or the tire inflation pressure is higher than the specification.3) Light trucks have more structural impact on the strain responses and pavement design when the thickness of the surfacing AC layer is thinner(e.g.≤50 mm).4) The acceleration of a vehicle does not significantly impact the AC surface distresses such as rutting at the top of the upgrade slopes or intersections;however,vehicle deceleration can dramatically induce horizontal shear strains and consequently,aggravate shoving and rutting problems at the highway intersections.Evidently,these factors should be taken into account during mechanistic stress-strain modeling and structural design of asphalt pavements.展开更多
This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy pro...This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy projection (EEP) technique. The main idea is to conceptually treat multi-dimensional problems as generalized 1D problems, based on which the concepts of generalized 1D FEM and its consequent EEP formulae have been developed in a unified manner. Equipped with these concepts, multi-dimensional problems can be recursively discretized in one dimension at each step, until a fully discretized standard finite element (FE) model is reached. This conceptual dimension-by- dimension (D-by-D) discretization procedure is entirely equivalent to a full FE discretization. As a reverse D-by-D recovery procedure, by using the unified EEP formulae together with proper extraction of the generalized nodal solutions, super-convergent displacements and first derivatives for two-dimensional (2D) and three-dimensional (3D) problems can be obtained over the domain. Numerical examples of 3D Poisson's equation and elasticity problem are given to verify the feasibility and effectiveness of the proposed strategy.展开更多
The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic d...The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.展开更多
In this article, we introduce a coupled approach of local discontinuous Calerkin and standard finite element method for solving convection diffusion problems. The whole domain is divided into two disjoint subdomains. ...In this article, we introduce a coupled approach of local discontinuous Calerkin and standard finite element method for solving convection diffusion problems. The whole domain is divided into two disjoint subdomains. The discontinuous Galerkin method is adopted in the subdomain where the solution varies rapidly, while the standard finite element method is used in the other subdomain due to its lower computational cost. The stability and a priori error estimate are established. We prove that the coupled method has O(ε1/2 + h1/2)hk) convergence rate in an associated norm, where ε is the diffusion coefficient, h is the mesh size and k is the degree of polynomial. The numerical results verify our theoretical results. Moreover, 2k-order superconvergence of the numerical traces at the nodes, and the optimal convergence of the errors under L2 norm are observed numerically on the uniform mesh. The numerical results also indicate that the coupled method has the same convergence order and almost the same errors as the purely LDG method.展开更多
Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load. This paper is meant to reveal the local buckling behavior of buried pipelines...Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load. This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength, which are under different conditions, including pure bending and bending combined with internal pressure. Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes. In parametric analysis, a series of parameters,including pipe geometrical dimension, pipe material properties and internal pressure, were selected to study their influences on the critical bending moment, critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg–Osgood constitutive model. Results showed that geometrical dimensions, material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress, which have different, even reverse effects on the critical compressive strain. Based on these analyses, more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bendingconditions, which provide theoretical methods for highstrength pipeline engineering.展开更多
Large amplitude sloshing in tanks is simulated by the least square particle finite element method (LSPFEM) in this paper. The least square finite element method (LSFEM) is employed to spatially discrete the Navier...Large amplitude sloshing in tanks is simulated by the least square particle finite element method (LSPFEM) in this paper. The least square finite element method (LSFEM) is employed to spatially discrete the Navier-Stokes equations, and to avoid the stabilization issues due to the incompressibility condition for equal-order interpolation of the velocity and the pressure, as usually used in Galerkin method to satisfy the well-known LBB condition. The LSPFEM also uses the Lagrangian description to model the motion of nodes (particles). A mesh which connects these nodes is constructed by a triangulation algorithm to avoid the mesh distortion. A quasi a-shapes algorithm is used to identify the free surface boundary. The nodes are viewed as particles which can freely move and even separate from the main fluid domain. Finally this method is used to study the large amplitude sloshing evolution in two dimensional tanks. The results are compared with those obtained by Flow-3d with good agreement.展开更多
Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model ...Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model.展开更多
In this paper, we construct the equations of generalized thermoelasicity for a non-homogeneous isotropic hollow cylider with a variable modulus of elasticity and thermal conductivity based on the Lord and Shulman theo...In this paper, we construct the equations of generalized thermoelasicity for a non-homogeneous isotropic hollow cylider with a variable modulus of elasticity and thermal conductivity based on the Lord and Shulman theory. The problem has been solved numerically using the finite element method. Numerical results for the displacement, the temperature, the radial stress, and the hoop stress distributions are illustrated graphically. Comparisons are made between the results predicted by the coupled theory and by the theory of generalized thermoelasticity with one relaxation time in the cases of temperature dependent and independent modulus of elasticity.展开更多
On the basis of test, nonlinear finite element analysis of reinforcedconcrete (R. C) short-limb shear walls under monotonic horizontal load are carried out by ANSYSprogram in order to understand the evolution of crack...On the basis of test, nonlinear finite element analysis of reinforcedconcrete (R. C) short-limb shear walls under monotonic horizontal load are carried out by ANSYSprogram in order to understand the evolution of cracking, deformation and failure course of thespecimens. At the same time, the results of numerical calculation are compared with the results oftest. The results indicate that, under monotonic horizontal load the failures of the specimens withflange wall and without flange wall all occur at the intersections of lintel bottom and limb ofwall, the failures also occur at the bottom of limb; the load-displacement curve of wall withoutflange is steeper than that of wall with flange, and the ductility is worse than that of wall withflange; the results, such as cracking, deformation, yield load and so on of finite element analysisagree well with the results of test. These results provide theoretical basis of study andapplication of R. C short-limb shear wall.展开更多
To solve the problem that the overlapping parts of a retractable pier column are prone to damage,this paper proposed the reinforcing measure of setting a stiffener ring at the bottom of the steel pipe.To study how the...To solve the problem that the overlapping parts of a retractable pier column are prone to damage,this paper proposed the reinforcing measure of setting a stiffener ring at the bottom of the steel pipe.To study how the stiffener-ring parameters influence the mechanical properties of the pier column.12 scale model specimens(including nine specimens with stiffener-ring widths of 40,50,and 60 mm and three unstiffened comparison specimens)were tested under axial compression.Based on the test results,the specimen load-displacement,load-deflection,and load-strain curves were analyzed,and a finite-element model of a pier column under axial compression was established to determine the optimal stiffener size.The results show that setting a stiffener ring enhances the cooperative working ability between the steel pipe and the internal filling material and restrains the lateral deformation of the pier column,thereby improving the ultimate bearing capacity and overall stability of the pier column.The ultimate bearing capacity of the pier column is related to the width and thickness of the stiffener ring.The optimal size of the stiffener ring of the model pier column is 70 mm in width and 4 mm in thickness.The present research results provide a reference for designing compressible pier columns and column stiffening in mines and have important practical significance.展开更多
In order to improve the bending load-carrying capacity (BLCC) of undermatched butt joint under three-point bending load, the influence of joint geometric parameters on stress concentration factors (SCF) at the wel...In order to improve the bending load-carrying capacity (BLCC) of undermatched butt joint under three-point bending load, the influence of joint geometric parameters on stress concentration factors (SCF) at the weld bottom center and the weld toe of uudermatched butt joint with single V-groove are studied respectively based on the finite element method in this paper. Results show that the reinforcement height and the cover pass width play decisive role in the BLCC for undermatched butt joint. BLCC of undermatched butt joint can be improved by choosing the appropriate joint geometric parameters.展开更多
Imperfections in the wheel-rail contact are one of the main sources of generation of railway vibrations. Consequently, it is essential to take expensive corrective maintenance measures, the results of which may be unk...Imperfections in the wheel-rail contact are one of the main sources of generation of railway vibrations. Consequently, it is essential to take expensive corrective maintenance measures, the results of which may be unknown. In order to assess the effectiveness of these measures, this paper develops a vehicle-track interaction model in the time domain of a curved track with presence of rail corrugation on the inner rail. To characterize the behavior of the track, a numerical finite element model is developed using ANSYS software, while the behavior of the vehicle is characterized by a unidirectional model of two masses developed with VAMPIRE PRO software. The overloads obtained with the dynamic model are applied to the numerical model and then, the vibrational response of the track is obtained. Results are validated with real data and used to assess the effectiveness of rail grinding in the reduction of wheel-rail forces and the vibration generation phenomenon.展开更多
In this paper, the Crank-Nicolson/Newton scheme for solving numerically second- order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the...In this paper, the Crank-Nicolson/Newton scheme for solving numerically second- order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the spatial discretization of the problem and the Crank-Nieolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete Crank- Nicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the efficient performance of the proposed scheme.展开更多
A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures meas...A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures measured using thermocouples buried in different positions of the mold with the original designed cooling system were analyzed to determine the corresponding heat flux profile. This profile was then used for simulation to predict the temperature distribution and the thermal stress distribution of the molds. The predicted temperatures during operation matched the plant measurements. The results showed that the maximum temperature, about 635 K in the wide hot surface, was found about 60 mm below the meniscus and 226 mm from the center of the mold. For the mold with the type I modified design, there was an insignificant decrease in temperature of about 5 K, and for the mold with the type II modified design, the maximum temperature was decreased by about 15 K and the temperature of the hot surface was distributed more uniformly along the length of the mold. The corresponding maximum thermal stress at the hot surface of the mold was reduced from 408 MPa to 386 MPa with the type II modified design. The results indicated that the modified design II is beneficial to the increase of mold life and the quality of casting slabs.展开更多
The load-bearing capacities f ductile composite materials andstructures are studied by means of a combined micro/macromechanicsapproach. Firstly, on the microscopic scale, the aim is to get themacroscopic strength dom...The load-bearing capacities f ductile composite materials andstructures are studied by means of a combined micro/macromechanicsapproach. Firstly, on the microscopic scale, the aim is to get themacroscopic strength domains by means of the homogenization theory ofmicromechanics. A representative volume element (RVE) is selected toreflect the microstructures of the composite materials. Byintroducing the homogenization theory into the kinematic limittheorem of plastic limit analysis, an optimization format to directlycalculate the limit loads of the RVE is obtained. And the macroscopicyield criterion can be deter- mined according to the relation betweenmacroscopic and microscopic fields.展开更多
An H1 space-time discontinuous Galerkin (STDG) scheme for convection- diffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H1 Galerkin method and the s...An H1 space-time discontinuous Galerkin (STDG) scheme for convection- diffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H1 Galerkin method and the space-time discontinuous finite element method that is discontinuous in time and continuous in space. The existence and the uniqueness of the approximate solution are proved. The convergence of the scheme is analyzed by using the techniques in the finite difference and finite element methods. An optimal a-priori error estimate in the L∞ (H1) norm is derived. The numerical exper- iments are presented to verify the theoretical results.展开更多
文摘Purpose-The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry resting on soft clay and to explore the effect of load amplitude,load frequency,presence of geogrid layer in ballast layer and ballast layer thickness on the behavior of track system.These variables are studied both experimentally and numerically.This paper examines the effect of geogrid reinforced ballast laying on a layer of clayey soil as a subgrade layer,where a half full scale railway tests are conducted as well as a theoretical analysis is performed.Design/methodologylapproach-The experimental tests work consists of laboratory model tests to investigate the reduction in the compressibility and stress distribution induced in soft clay under a ballast railway reinforced by geogrid reinforcement subjected to dynamic load.Experimental model based on an approximate half scale for general rail track engineering practice is adopted in this study which is used in Iraqi railways.The investigated parameters are load amplitude,load frequency and presence of geogrid reinforcement layer.A half fuli-scale railway was constructed for carrying out the tests,which consists of two rails 800 mm in iength with three w00den sleepers(900 mm×90 mm×90 mm).The ballast was overlying 500 mm thick clay layer.The tests were carried out with and without geogrid reinforcement,the tests were carried out in a well tied steel box of 1.5 m length X 1 m width X 1 m height.A series of laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid.Settlement in ballast and clay,was measured in reinforced and unreinforced ballast cases.In addition to the laboratory tests,the application of numerical analysis was made by using the finite element program PLAXIS 3D 2013.Findings-It was concluded that the settlement increased with increasing the simulated train load amplitude,there is a sharp increase in settlement up to the cycle 500 and after that,there is a gradual increase to level out between,2,500 and 4,500 cycles depending on the load frequency.There is a little increase in the induced settlement when the load amplitude increased from 0.5 to i ton,but it is higher when the load amplitude increased to 2 ton,the increase in settlement depends on the geogrid existence and the other studied parameters.Both experimental and numerical results showed the same behavior.The effect of load frequency on the settlement ratio is almost constant after 500 cycles.In general,for reinforced cases,the effect of load frequency on the settlement ratio is very small ranging between 0.5 and 2%compared with the unreinforcedcase.Originalitylvalue-Increasing the ballast layer thickness from 20 cm to 30 cm leads to decrease the settlement by about 50%.This ascertains the efficiency of ballast in spreading the waves induced by the track.
文摘Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data.
基金financially supported by the National Natural Science Foundation of China(No.41574127 and 41174104)the National Key Technology R&D Program for the 13th five-year plan(No.2016ZX05018006-006)
文摘To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direct current method, we propose a new mesh refinement and recoarsement method for a two-dimensional point source. We introduce the mesh refinement and mesh recoarsement into the traditional structured mesh subdivision. By refining the horizontal grids, the singularity owing to the point source is minimized and the topography is simulated. By recoarsening the horizontal grids, the number of grid cells is reduced significantly and computational efficiency is improved. Model tests show that the proposed method solves the singularity problem and reduces the number of grid cells by 80% compared to the uniform grid refinement.
基金The project supported by the National Natural Science Foundation of China(10672036,10472025 and 10421002)the Natural Science Foundation of Liaoning Province(20032109)
文摘In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed threedimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosingdiseases related to anatomical structure and function of the upper airway.
文摘A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating various vehicle motions:stationary and non-stationary(i.e.in acceleration or deceleration mode).Analysis of the results indicated the following items.1) It is critical to use the vertical TPCP as the design control criteria for the tensile strains at the bottom of the AC layer when the base layer modulus is lower in magnitude(e.g.≤400 MPa);however,when the base layer modulus is higher in magnitude(e.g.≥7 000 MPa),the horizontal TPCP and the tensile strains in the X-direction at the surface of the AC layer should also be considered as part of the design response criteria.2) The definition of "overload" needs to be revised to include tire pressure over-inflation,i.e.,a vehicle should be considered to be overloaded if the wheel load exceeds the specification and/or the tire inflation pressure is higher than the specification.3) Light trucks have more structural impact on the strain responses and pavement design when the thickness of the surfacing AC layer is thinner(e.g.≤50 mm).4) The acceleration of a vehicle does not significantly impact the AC surface distresses such as rutting at the top of the upgrade slopes or intersections;however,vehicle deceleration can dramatically induce horizontal shear strains and consequently,aggravate shoving and rutting problems at the highway intersections.Evidently,these factors should be taken into account during mechanistic stress-strain modeling and structural design of asphalt pavements.
基金supported by the National Natural Science Foundation of China(Nos.51378293 and 51078199)
文摘This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy projection (EEP) technique. The main idea is to conceptually treat multi-dimensional problems as generalized 1D problems, based on which the concepts of generalized 1D FEM and its consequent EEP formulae have been developed in a unified manner. Equipped with these concepts, multi-dimensional problems can be recursively discretized in one dimension at each step, until a fully discretized standard finite element (FE) model is reached. This conceptual dimension-by- dimension (D-by-D) discretization procedure is entirely equivalent to a full FE discretization. As a reverse D-by-D recovery procedure, by using the unified EEP formulae together with proper extraction of the generalized nodal solutions, super-convergent displacements and first derivatives for two-dimensional (2D) and three-dimensional (3D) problems can be obtained over the domain. Numerical examples of 3D Poisson's equation and elasticity problem are given to verify the feasibility and effectiveness of the proposed strategy.
基金supported by the Sinoprobe Deep Exploration in China(SinoProbe-07)research funds of the Institute of Geomechanics,Chinese Academy of Geological Sciences(Grant No.DZLXJK201105)National Basic Research Program of China(973 Program)(Grant No.2008CB425702)
文摘The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.
基金Supported by National Natural Science Foundation of China (10571046, 10571053, and 10871066)Program for New Century Excellent Talents in University (NCET-06-0712)+2 种基金Key Laboratory of Computational and Stochastic Mathematics and Its Applications, Universities of Hunan Province, Hunan Normal Universitythe Project of Scientific Research Fund of Hunan Provincial Education Department (09K025)the Key Scientific Research Topic of Jiaxing University (70110X05BL)
文摘In this article, we introduce a coupled approach of local discontinuous Calerkin and standard finite element method for solving convection diffusion problems. The whole domain is divided into two disjoint subdomains. The discontinuous Galerkin method is adopted in the subdomain where the solution varies rapidly, while the standard finite element method is used in the other subdomain due to its lower computational cost. The stability and a priori error estimate are established. We prove that the coupled method has O(ε1/2 + h1/2)hk) convergence rate in an associated norm, where ε is the diffusion coefficient, h is the mesh size and k is the degree of polynomial. The numerical results verify our theoretical results. Moreover, 2k-order superconvergence of the numerical traces at the nodes, and the optimal convergence of the errors under L2 norm are observed numerically on the uniform mesh. The numerical results also indicate that the coupled method has the same convergence order and almost the same errors as the purely LDG method.
基金supported by the National ScienceTechnology Support Plan Projects of China, under Award No. 2015BAK16B02
文摘Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load. This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength, which are under different conditions, including pure bending and bending combined with internal pressure. Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes. In parametric analysis, a series of parameters,including pipe geometrical dimension, pipe material properties and internal pressure, were selected to study their influences on the critical bending moment, critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg–Osgood constitutive model. Results showed that geometrical dimensions, material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress, which have different, even reverse effects on the critical compressive strain. Based on these analyses, more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bendingconditions, which provide theoretical methods for highstrength pipeline engineering.
基金The project supported by the National Natural Science Foundation of China(10302013,10572022)
文摘Large amplitude sloshing in tanks is simulated by the least square particle finite element method (LSPFEM) in this paper. The least square finite element method (LSFEM) is employed to spatially discrete the Navier-Stokes equations, and to avoid the stabilization issues due to the incompressibility condition for equal-order interpolation of the velocity and the pressure, as usually used in Galerkin method to satisfy the well-known LBB condition. The LSPFEM also uses the Lagrangian description to model the motion of nodes (particles). A mesh which connects these nodes is constructed by a triangulation algorithm to avoid the mesh distortion. A quasi a-shapes algorithm is used to identify the free surface boundary. The nodes are viewed as particles which can freely move and even separate from the main fluid domain. Finally this method is used to study the large amplitude sloshing evolution in two dimensional tanks. The results are compared with those obtained by Flow-3d with good agreement.
基金the State Key Program of National Natural Science of China under Grant No.51138001Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Grant No.51121005Open Research Fund Program of State key Laboratory of Hydro science and Engineering under Grant No.shlhse-2010-C-03
文摘Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model.
文摘In this paper, we construct the equations of generalized thermoelasicity for a non-homogeneous isotropic hollow cylider with a variable modulus of elasticity and thermal conductivity based on the Lord and Shulman theory. The problem has been solved numerically using the finite element method. Numerical results for the displacement, the temperature, the radial stress, and the hoop stress distributions are illustrated graphically. Comparisons are made between the results predicted by the coupled theory and by the theory of generalized thermoelasticity with one relaxation time in the cases of temperature dependent and independent modulus of elasticity.
文摘On the basis of test, nonlinear finite element analysis of reinforcedconcrete (R. C) short-limb shear walls under monotonic horizontal load are carried out by ANSYSprogram in order to understand the evolution of cracking, deformation and failure course of thespecimens. At the same time, the results of numerical calculation are compared with the results oftest. The results indicate that, under monotonic horizontal load the failures of the specimens withflange wall and without flange wall all occur at the intersections of lintel bottom and limb ofwall, the failures also occur at the bottom of limb; the load-displacement curve of wall withoutflange is steeper than that of wall with flange, and the ductility is worse than that of wall withflange; the results, such as cracking, deformation, yield load and so on of finite element analysisagree well with the results of test. These results provide theoretical basis of study andapplication of R. C short-limb shear wall.
文摘To solve the problem that the overlapping parts of a retractable pier column are prone to damage,this paper proposed the reinforcing measure of setting a stiffener ring at the bottom of the steel pipe.To study how the stiffener-ring parameters influence the mechanical properties of the pier column.12 scale model specimens(including nine specimens with stiffener-ring widths of 40,50,and 60 mm and three unstiffened comparison specimens)were tested under axial compression.Based on the test results,the specimen load-displacement,load-deflection,and load-strain curves were analyzed,and a finite-element model of a pier column under axial compression was established to determine the optimal stiffener size.The results show that setting a stiffener ring enhances the cooperative working ability between the steel pipe and the internal filling material and restrains the lateral deformation of the pier column,thereby improving the ultimate bearing capacity and overall stability of the pier column.The ultimate bearing capacity of the pier column is related to the width and thickness of the stiffener ring.The optimal size of the stiffener ring of the model pier column is 70 mm in width and 4 mm in thickness.The present research results provide a reference for designing compressible pier columns and column stiffening in mines and have important practical significance.
基金The authors are grateful to be financially supported by Projects of Natural Science Foundation of Heilongjiang Province (No. E201458) , State Key Lab of Advanced Welding and Joining, Har- bin Institute of Technology (AWJ-M13-14) and Hei longjiang Prov- ince Department of Education (12541679).
文摘In order to improve the bending load-carrying capacity (BLCC) of undermatched butt joint under three-point bending load, the influence of joint geometric parameters on stress concentration factors (SCF) at the weld bottom center and the weld toe of uudermatched butt joint with single V-groove are studied respectively based on the finite element method in this paper. Results show that the reinforcement height and the cover pass width play decisive role in the BLCC for undermatched butt joint. BLCC of undermatched butt joint can be improved by choosing the appropriate joint geometric parameters.
文摘Imperfections in the wheel-rail contact are one of the main sources of generation of railway vibrations. Consequently, it is essential to take expensive corrective maintenance measures, the results of which may be unknown. In order to assess the effectiveness of these measures, this paper develops a vehicle-track interaction model in the time domain of a curved track with presence of rail corrugation on the inner rail. To characterize the behavior of the track, a numerical finite element model is developed using ANSYS software, while the behavior of the vehicle is characterized by a unidirectional model of two masses developed with VAMPIRE PRO software. The overloads obtained with the dynamic model are applied to the numerical model and then, the vibrational response of the track is obtained. Results are validated with real data and used to assess the effectiveness of rail grinding in the reduction of wheel-rail forces and the vibration generation phenomenon.
基金in part supported by the Distinguished Young Scholars Fund of Xinjiang Province(2013711010)NCET-13-0988the NSF of China(11271313,11271298,61163027,and 11362021)
文摘In this paper, the Crank-Nicolson/Newton scheme for solving numerically second- order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the spatial discretization of the problem and the Crank-Nieolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete Crank- Nicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the efficient performance of the proposed scheme.
基金financially supported by the National Natural Science Foundation of China(Nos.51525401,51274054,U1332115,51401044)the Science and Technology Planning Project of Dalian(No.2013A16GX110)+1 种基金the China Postdoctoral Science Foundation(2015M581331)the Fundamental Research Funds for the Central Universities
文摘A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures measured using thermocouples buried in different positions of the mold with the original designed cooling system were analyzed to determine the corresponding heat flux profile. This profile was then used for simulation to predict the temperature distribution and the thermal stress distribution of the molds. The predicted temperatures during operation matched the plant measurements. The results showed that the maximum temperature, about 635 K in the wide hot surface, was found about 60 mm below the meniscus and 226 mm from the center of the mold. For the mold with the type I modified design, there was an insignificant decrease in temperature of about 5 K, and for the mold with the type II modified design, the maximum temperature was decreased by about 15 K and the temperature of the hot surface was distributed more uniformly along the length of the mold. The corresponding maximum thermal stress at the hot surface of the mold was reduced from 408 MPa to 386 MPa with the type II modified design. The results indicated that the modified design II is beneficial to the increase of mold life and the quality of casting slabs.
基金the National Natural Soiece Foundation of China (No.19902007)the National Foundation for Excellent Doctoral Dissertation of China (No.200025)+1 种基金the Fund of the Ministry of Education of China for Returned Oversea Scholarsthe Basie Research Foundation of Tsiughua University.
文摘The load-bearing capacities f ductile composite materials andstructures are studied by means of a combined micro/macromechanicsapproach. Firstly, on the microscopic scale, the aim is to get themacroscopic strength domains by means of the homogenization theory ofmicromechanics. A representative volume element (RVE) is selected toreflect the microstructures of the composite materials. Byintroducing the homogenization theory into the kinematic limittheorem of plastic limit analysis, an optimization format to directlycalculate the limit loads of the RVE is obtained. And the macroscopicyield criterion can be deter- mined according to the relation betweenmacroscopic and microscopic fields.
基金Project supported by the National Natural Science Foundation of China (No. 11061021)the Inner Mongolia College Research Project (No. NJ10006)the Natural Science Foundation of Inner Mongolia of China (No. 2012MS0106)
文摘An H1 space-time discontinuous Galerkin (STDG) scheme for convection- diffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H1 Galerkin method and the space-time discontinuous finite element method that is discontinuous in time and continuous in space. The existence and the uniqueness of the approximate solution are proved. The convergence of the scheme is analyzed by using the techniques in the finite difference and finite element methods. An optimal a-priori error estimate in the L∞ (H1) norm is derived. The numerical exper- iments are presented to verify the theoretical results.