The new method is presented for computing engineering structure reliability by direct searching the next checking point and accelerating convergence based on the analysis of errors in the center point method and borro...The new method is presented for computing engineering structure reliability by direct searching the next checking point and accelerating convergence based on the analysis of errors in the center point method and borrowing ideas form the merits of the other First-Order Second Moment (FOSM) methods. The idea of the direct searching method is constructing a new explicit searching formula to make the new checking point being more closed to the failure surface based on the results of the center point method. The new checking point has steepest descent character because the searching path is the gradient of the approximate surface. An example shows that the method presented in this article has well precision. Although the direct searching formula may not reach the globally optimal point, the error can be controlled owing to the locally optimal plan at each searching step.展开更多
Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization ...Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.展开更多
为了有效评价测量响应中不确定性对结构参量识别结果的影响,提出一种基于λ概率密度函数(Probability distribution function,PDF)和一次二阶矩的不确定性计算反求方法。采用二次衍生λ-PDF对待识不确定性参量的PDF进行建模。内层通过...为了有效评价测量响应中不确定性对结构参量识别结果的影响,提出一种基于λ概率密度函数(Probability distribution function,PDF)和一次二阶矩的不确定性计算反求方法。采用二次衍生λ-PDF对待识不确定性参量的PDF进行建模。内层通过对参量呈λ-PDF的功能函数采用一次二阶矩法进行正问题求解,得到计算响应的概率分布;外层通过最小化测量响应与计算响应之间的概率分布特征量将不确定性反问题转化为确定性的最优化问题,并用隔代映射遗传算法识别未知参量λ-PDF的参数。本方法不仅有效地实现了结构未知参量PDF的估计,而且与传统基于抽样的统计方法相比,计算效率较高。数值算例和工程应用验证了本方法的可行性和有效性。展开更多
文摘The new method is presented for computing engineering structure reliability by direct searching the next checking point and accelerating convergence based on the analysis of errors in the center point method and borrowing ideas form the merits of the other First-Order Second Moment (FOSM) methods. The idea of the direct searching method is constructing a new explicit searching formula to make the new checking point being more closed to the failure surface based on the results of the center point method. The new checking point has steepest descent character because the searching path is the gradient of the approximate surface. An example shows that the method presented in this article has well precision. Although the direct searching formula may not reach the globally optimal point, the error can be controlled owing to the locally optimal plan at each searching step.
基金National Natural Science Foundation of China (10377015)
文摘Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.
文摘为了有效评价测量响应中不确定性对结构参量识别结果的影响,提出一种基于λ概率密度函数(Probability distribution function,PDF)和一次二阶矩的不确定性计算反求方法。采用二次衍生λ-PDF对待识不确定性参量的PDF进行建模。内层通过对参量呈λ-PDF的功能函数采用一次二阶矩法进行正问题求解,得到计算响应的概率分布;外层通过最小化测量响应与计算响应之间的概率分布特征量将不确定性反问题转化为确定性的最优化问题,并用隔代映射遗传算法识别未知参量λ-PDF的参数。本方法不仅有效地实现了结构未知参量PDF的估计,而且与传统基于抽样的统计方法相比,计算效率较高。数值算例和工程应用验证了本方法的可行性和有效性。