In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me...In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.展开更多
The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equation...The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equations were expanded with respect to a snmll parameter to get the zeroth- and first-order approximate equations. By using the differenl2al quadrature method with only a few grid points, the high-accurate numerical results were obtained.展开更多
A two-grid partition of unity method for second order elliptic problems is proposed and analyzed. The standard two-grid method is a local and parallel method usually leading to a discontinuous solution in the entire c...A two-grid partition of unity method for second order elliptic problems is proposed and analyzed. The standard two-grid method is a local and parallel method usually leading to a discontinuous solution in the entire computational domain. Partition of unity method is employed to glue all the local solutions together to get the global continuous one, which is optimal in HI-norm. Furthermore, it is shown that the L^2 error can be improved by using the coarse grid correction. Numerical experiments are reported to support the theoretical results.展开更多
An alternating direction implicit (ADI) Galerkin method with moving finite element spaces is formulated for a class of second order hyperbolic equations in two space variables. A priori H 1 error estimate is derived.
This paper presents the theory and applications of a new computational technique referred to as Differential Transform Method (DTM) for solving second order linear ordinary differential equations, for both homogeneous...This paper presents the theory and applications of a new computational technique referred to as Differential Transform Method (DTM) for solving second order linear ordinary differential equations, for both homogeneous and nonhomogeneous cases. For the robustness and efficiency of the method, four examples are considered. The results indicate that the DTM is reliable and accurate when compared to the exact solutions of the solved problems.展开更多
Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is ...Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is discussed. The second order iterative methods behave quite similar to first order methods and the development of efficient preconditioners for solving the original linear system is a decisive factor for making the second order iterative methods superior to the first order iterative methods. Adaptive preconditioned Conjugate Gradient methods using explicit approximate preconditioners for solving efficiently large sparse systems of algebraic equations are also presented. The generalized Approximate Inverse Matrix techniques can be efficiently used in conjunction with explicit iterative schemes leading to effective composite semi-direct solution methods for solving large linear systems of algebraic equations.展开更多
A combined approximate scheme is defined for convection-diffusion-reaction equations. This scheme is constructed by two methods. Standard mixed finite element method is used for diffusion term. A second order characte...A combined approximate scheme is defined for convection-diffusion-reaction equations. This scheme is constructed by two methods. Standard mixed finite element method is used for diffusion term. A second order characteristic finite element method is presented to handle the material derivative term, that is, the time derivative term plus the convection term. The stability is proved and the L2-norm error estimates are derived for both the scalar unknown variable and its flux. The scheme is of second order accuracy in time increment, symmetric, and unconditionally stable.展开更多
The correspondence principle is an important mathematical technique to compute the non-ageing linear viscoelastic problem as it allows to take advantage of the computational methods originally developed for the elasti...The correspondence principle is an important mathematical technique to compute the non-ageing linear viscoelastic problem as it allows to take advantage of the computational methods originally developed for the elastic case. However, the correspon- dence principle becomes invalid when the materials exhibit ageing. To deal with this problem, a second-order two-scale (SOTS) computational method in the time domain is presented to predict the ageing linear viscoelastic performance of composite materials with a periodic structure. First, in the time domain, the SOTS formulation for calcu- lating the effective relaxation modulus and displacement approximate solutions of the ageing viscoelastic problem is formally derived. Error estimates of the displacement ap- proximate solutions for SOTS method are then given. Numerical results obtained by the SOTS method are shown and compared with those by the finite element method in a very fine mesh. Both the analytical and numerical results show that the SOTS computational method is feasible and efficient to predict the ageing linear viscoelastic performance of composite materials with a periodic structure.展开更多
In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this...In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.展开更多
The new method is presented for computing engineering structure reliability by direct searching the next checking point and accelerating convergence based on the analysis of errors in the center point method and borro...The new method is presented for computing engineering structure reliability by direct searching the next checking point and accelerating convergence based on the analysis of errors in the center point method and borrowing ideas form the merits of the other First-Order Second Moment (FOSM) methods. The idea of the direct searching method is constructing a new explicit searching formula to make the new checking point being more closed to the failure surface based on the results of the center point method. The new checking point has steepest descent character because the searching path is the gradient of the approximate surface. An example shows that the method presented in this article has well precision. Although the direct searching formula may not reach the globally optimal point, the error can be controlled owing to the locally optimal plan at each searching step.展开更多
Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization ...Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.展开更多
In this paper, an improved splitting method, based on the completely square-conservative explicit difference schemes, is established. Not only can the time-direction precision of this method be higher than that of the...In this paper, an improved splitting method, based on the completely square-conservative explicit difference schemes, is established. Not only can the time-direction precision of this method be higher than that of the traditional splitting methods but also can the physical feature of mutual dependence of the fast and the slow stages that are calculated separately and splittingly be kept as well. Moreover, the method owns an universality, it can be generalized to other square-conservative difference schemes, such as the implicit and complete ones and the explicit and instantaneous ones. Good time benefits can be acquired when it is applied in the numerical simulations of the monthly mean currents of the South China Sea.展开更多
Through a higher-order boundary element method based on NURBS (Non-uniform Rational B-splines), the calculation of second-order low-frequency forces and slow drift motions is conducted for floating bodies. In the fl...Through a higher-order boundary element method based on NURBS (Non-uniform Rational B-splines), the calculation of second-order low-frequency forces and slow drift motions is conducted for floating bodies. In the floating body's inner domain, an auxiliary equation is obtained by applying a Green function which satisfies the solid surface condition. Then, the auxiliary equation and the velocity potential equation are combined in the fluid domain to remove the solid angle coefficient and the singularity of the double layer potentials in the integral equation. Thus, a new velocity potential integral equation is obtained. The new equation is extended to the inner domain to reheve the irregular frequency effects; on the basis of the order analysis, the comparison is made about the contribution of all integral terms with the result in the second-order tow-frequency problem; the higher-order boundary element method based on NURBS is apphed to calculate the geometric position and velocity potentials; the slow drift motions are calculated by the spectrum analysis method. Removing the solid angle coefficient can apply NURBS technology to the hydrodynamic calculation of floating bodies with complex surfaces, and the extended boundary integral method can reduce the irregular frequency effects. Order analysis shows that free surface integral can be neglected, and the numerical results can also prove the correctness of order analysis. The results of second-order low-frequency forces and slow drift motions and the comparison with the results from references show that the application of the NURBS technology to the second-order low-frequency problem is of high efficiency and credible results.展开更多
The heat transfer of a magnetohydrodynamics nanofluid inside an annulus considering the second-order slip condition and nanoparticle migration is theoret-ically investigated. A second-order slip condition, which appro...The heat transfer of a magnetohydrodynamics nanofluid inside an annulus considering the second-order slip condition and nanoparticle migration is theoret-ically investigated. A second-order slip condition, which appropriately represents the non-equilibrium region near the interface, is prescribed rather than the no-slip condition and the linear Navier slip condition. To impose different temperature gradients, the outer wall is subjected to q2, the inner wall is subjected to q1, and q1 〉 q2. A modified two-component four-equation non-homogeneous equilibrium model is employed for the nanofiuid, which have been reduced to two-point ordinary boundary value differential equations in the consideration of the thermally and hydrodynamically fully developed flow. The homotopy analysis method (HAM) is employed to solve the equations, and the h-curves are plotted to verify the accuracy and efficiency of the solutions. Moreover, the effects of the physical factors on the flow and heat transfer are discussed in detail, and the semi-analytical relation between NUB and NBT is obtained.展开更多
The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial second-order fluid was studied for modeling wet granular materials using the discrete element method. Based on the Reyn...The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial second-order fluid was studied for modeling wet granular materials using the discrete element method. Based on the Reynolds' lubrication theory, the small parameter method was introduced to approximately analyze velocity field and stress distribution between the two disks. Then a similar procedure was carried out for analyzing the normal interaction between two nearly touching, arbitrary rigid spheres to obtain the pressure distribution and the resulting squeeze force. It has been proved that the solutions can be reduced to the case of a Newtonian fluid when the non-Newtonian terms are neglected.展开更多
In this paper, the extremum of second-order directional derivatives, i.e. the gradient of first-order derivatives is discussed. Given second-order directional derivatives in three nonparallel directions, or given seco...In this paper, the extremum of second-order directional derivatives, i.e. the gradient of first-order derivatives is discussed. Given second-order directional derivatives in three nonparallel directions, or given second-order directional derivatives and mixed directional derivatives in two nonparallel directions, the formulae for the extremum of second-order directional derivatives are derived, and the directions corresponding to maximum and minimum are perpendicular to each other.展开更多
It was found that micro amounts of oxalate showed a very strong catalytic effect on the slow reaction between K 2Cr 2O 7 and Orange Ⅳ in a diluted sulfuric acid medium in a water bath at 70 ℃ . Orange Ⅳ exhib...It was found that micro amounts of oxalate showed a very strong catalytic effect on the slow reaction between K 2Cr 2O 7 and Orange Ⅳ in a diluted sulfuric acid medium in a water bath at 70 ℃ . Orange Ⅳ exhibited a sensitive second order derivative polarographic wave at -0 50 V( vs . SCE). This provides the basis for a sensitive and selective catalytic kinetic method for oxalate determination with second order derivative oscillopolarography. The effects of sulphuric acid, K 2Cr 2O 7, and orange Ⅳ concentrations, reaction temperature and reaction time were investigated. A calibration curve of oxalate in the range of 0 1-2 0 μg/mL was obtained by the fixed time procedure. The detection limit was 0 03 μg/ mL. The possible interference from co existing substances or ions was examined. The new method has a high sensitivity and a good selectivity compared to other existing methods for oxalic acid determination. It has been applied to the determination of micro amounts of oxalate in real urine samples with satisfactory results.展开更多
In this paper, Goursat’s problems for: linear and nonlinear hyperbolic equations of second-order, systems of nonlinear hyperbolic equations and fourth-order linear hyperbolic equations in which the attached condition...In this paper, Goursat’s problems for: linear and nonlinear hyperbolic equations of second-order, systems of nonlinear hyperbolic equations and fourth-order linear hyperbolic equations in which the attached conditions are given on the characteristics curves are transformed in such a manner that the Adomian decomposition method (ADM) can be applied. Some examples with closed-form solutions are studied in detail to further illustrate the proposed technique, and the results obtained indicate this approach is indeed practical and efficient.展开更多
The superconvergence in the finite element method is a phenomenon in which the finite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and ana...The superconvergence in the finite element method is a phenomenon in which the finite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and analyzed superconvergence of the conforming finite element method by L2-projections. The goal of this paper is to perform numerical experiments using MATLAB to support and to verify the theoretical results in Wang for the superconvergence of the conforming finite element method (CFEM) for the second order elliptic problems by L2-projection methods. MATLAB codes are published at https://github.com/annaleeharris/Superconvergence-CFEM for anyone to use and to study.展开更多
基金heprojectissupportedbyNNSFofChina (No .1 9972 0 39) .
文摘In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.
文摘The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equations were expanded with respect to a snmll parameter to get the zeroth- and first-order approximate equations. By using the differenl2al quadrature method with only a few grid points, the high-accurate numerical results were obtained.
基金Project supported by the National Natural Science Foundation of China(No.40074031)the Science Foundation of the Science and Technology Commission of Shanghai Municipalitythe Program for Young Excellent Talents in Tongji University(No.2007kj008)
文摘A two-grid partition of unity method for second order elliptic problems is proposed and analyzed. The standard two-grid method is a local and parallel method usually leading to a discontinuous solution in the entire computational domain. Partition of unity method is employed to glue all the local solutions together to get the global continuous one, which is optimal in HI-norm. Furthermore, it is shown that the L^2 error can be improved by using the coarse grid correction. Numerical experiments are reported to support the theoretical results.
基金the National Natural Sciences Foundation of China
文摘An alternating direction implicit (ADI) Galerkin method with moving finite element spaces is formulated for a class of second order hyperbolic equations in two space variables. A priori H 1 error estimate is derived.
文摘This paper presents the theory and applications of a new computational technique referred to as Differential Transform Method (DTM) for solving second order linear ordinary differential equations, for both homogeneous and nonhomogeneous cases. For the robustness and efficiency of the method, four examples are considered. The results indicate that the DTM is reliable and accurate when compared to the exact solutions of the solved problems.
文摘Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is discussed. The second order iterative methods behave quite similar to first order methods and the development of efficient preconditioners for solving the original linear system is a decisive factor for making the second order iterative methods superior to the first order iterative methods. Adaptive preconditioned Conjugate Gradient methods using explicit approximate preconditioners for solving efficiently large sparse systems of algebraic equations are also presented. The generalized Approximate Inverse Matrix techniques can be efficiently used in conjunction with explicit iterative schemes leading to effective composite semi-direct solution methods for solving large linear systems of algebraic equations.
文摘A combined approximate scheme is defined for convection-diffusion-reaction equations. This scheme is constructed by two methods. Standard mixed finite element method is used for diffusion term. A second order characteristic finite element method is presented to handle the material derivative term, that is, the time derivative term plus the convection term. The stability is proved and the L2-norm error estimates are derived for both the scalar unknown variable and its flux. The scheme is of second order accuracy in time increment, symmetric, and unconditionally stable.
基金Project supported by the National Natural Science Foundation of China(No.11471262)
文摘The correspondence principle is an important mathematical technique to compute the non-ageing linear viscoelastic problem as it allows to take advantage of the computational methods originally developed for the elastic case. However, the correspon- dence principle becomes invalid when the materials exhibit ageing. To deal with this problem, a second-order two-scale (SOTS) computational method in the time domain is presented to predict the ageing linear viscoelastic performance of composite materials with a periodic structure. First, in the time domain, the SOTS formulation for calcu- lating the effective relaxation modulus and displacement approximate solutions of the ageing viscoelastic problem is formally derived. Error estimates of the displacement ap- proximate solutions for SOTS method are then given. Numerical results obtained by the SOTS method are shown and compared with those by the finite element method in a very fine mesh. Both the analytical and numerical results show that the SOTS computational method is feasible and efficient to predict the ageing linear viscoelastic performance of composite materials with a periodic structure.
基金partially supported by China National Major Science and Technology Project (Subproject No:2011ZX05024-001-03)
文摘In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.
文摘The new method is presented for computing engineering structure reliability by direct searching the next checking point and accelerating convergence based on the analysis of errors in the center point method and borrowing ideas form the merits of the other First-Order Second Moment (FOSM) methods. The idea of the direct searching method is constructing a new explicit searching formula to make the new checking point being more closed to the failure surface based on the results of the center point method. The new checking point has steepest descent character because the searching path is the gradient of the approximate surface. An example shows that the method presented in this article has well precision. Although the direct searching formula may not reach the globally optimal point, the error can be controlled owing to the locally optimal plan at each searching step.
基金National Natural Science Foundation of China (10377015)
文摘Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.
基金Partly supported by the State Major Key Project for Basic Researches
文摘In this paper, an improved splitting method, based on the completely square-conservative explicit difference schemes, is established. Not only can the time-direction precision of this method be higher than that of the traditional splitting methods but also can the physical feature of mutual dependence of the fast and the slow stages that are calculated separately and splittingly be kept as well. Moreover, the method owns an universality, it can be generalized to other square-conservative difference schemes, such as the implicit and complete ones and the explicit and instantaneous ones. Good time benefits can be acquired when it is applied in the numerical simulations of the monthly mean currents of the South China Sea.
文摘Through a higher-order boundary element method based on NURBS (Non-uniform Rational B-splines), the calculation of second-order low-frequency forces and slow drift motions is conducted for floating bodies. In the floating body's inner domain, an auxiliary equation is obtained by applying a Green function which satisfies the solid surface condition. Then, the auxiliary equation and the velocity potential equation are combined in the fluid domain to remove the solid angle coefficient and the singularity of the double layer potentials in the integral equation. Thus, a new velocity potential integral equation is obtained. The new equation is extended to the inner domain to reheve the irregular frequency effects; on the basis of the order analysis, the comparison is made about the contribution of all integral terms with the result in the second-order tow-frequency problem; the higher-order boundary element method based on NURBS is apphed to calculate the geometric position and velocity potentials; the slow drift motions are calculated by the spectrum analysis method. Removing the solid angle coefficient can apply NURBS technology to the hydrodynamic calculation of floating bodies with complex surfaces, and the extended boundary integral method can reduce the irregular frequency effects. Order analysis shows that free surface integral can be neglected, and the numerical results can also prove the correctness of order analysis. The results of second-order low-frequency forces and slow drift motions and the comparison with the results from references show that the application of the NURBS technology to the second-order low-frequency problem is of high efficiency and credible results.
基金Project supported by the National Natural Science Foundation of China(Nos.51476191 and51406008)
文摘The heat transfer of a magnetohydrodynamics nanofluid inside an annulus considering the second-order slip condition and nanoparticle migration is theoret-ically investigated. A second-order slip condition, which appropriately represents the non-equilibrium region near the interface, is prescribed rather than the no-slip condition and the linear Navier slip condition. To impose different temperature gradients, the outer wall is subjected to q2, the inner wall is subjected to q1, and q1 〉 q2. A modified two-component four-equation non-homogeneous equilibrium model is employed for the nanofiuid, which have been reduced to two-point ordinary boundary value differential equations in the consideration of the thermally and hydrodynamically fully developed flow. The homotopy analysis method (HAM) is employed to solve the equations, and the h-curves are plotted to verify the accuracy and efficiency of the solutions. Moreover, the effects of the physical factors on the flow and heat transfer are discussed in detail, and the semi-analytical relation between NUB and NBT is obtained.
文摘The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial second-order fluid was studied for modeling wet granular materials using the discrete element method. Based on the Reynolds' lubrication theory, the small parameter method was introduced to approximately analyze velocity field and stress distribution between the two disks. Then a similar procedure was carried out for analyzing the normal interaction between two nearly touching, arbitrary rigid spheres to obtain the pressure distribution and the resulting squeeze force. It has been proved that the solutions can be reduced to the case of a Newtonian fluid when the non-Newtonian terms are neglected.
基金Supported by the National Natural Science Foundation of China (10871029,11071025)the Foundation of CAEP (2010A0202010)the Foundation of National Key Laboratory of Science and Technology on Computational Physics
文摘In this paper, the extremum of second-order directional derivatives, i.e. the gradient of first-order derivatives is discussed. Given second-order directional derivatives in three nonparallel directions, or given second-order directional derivatives and mixed directional derivatives in two nonparallel directions, the formulae for the extremum of second-order directional derivatives are derived, and the directions corresponding to maximum and minimum are perpendicular to each other.
文摘It was found that micro amounts of oxalate showed a very strong catalytic effect on the slow reaction between K 2Cr 2O 7 and Orange Ⅳ in a diluted sulfuric acid medium in a water bath at 70 ℃ . Orange Ⅳ exhibited a sensitive second order derivative polarographic wave at -0 50 V( vs . SCE). This provides the basis for a sensitive and selective catalytic kinetic method for oxalate determination with second order derivative oscillopolarography. The effects of sulphuric acid, K 2Cr 2O 7, and orange Ⅳ concentrations, reaction temperature and reaction time were investigated. A calibration curve of oxalate in the range of 0 1-2 0 μg/mL was obtained by the fixed time procedure. The detection limit was 0 03 μg/ mL. The possible interference from co existing substances or ions was examined. The new method has a high sensitivity and a good selectivity compared to other existing methods for oxalic acid determination. It has been applied to the determination of micro amounts of oxalate in real urine samples with satisfactory results.
文摘In this paper, Goursat’s problems for: linear and nonlinear hyperbolic equations of second-order, systems of nonlinear hyperbolic equations and fourth-order linear hyperbolic equations in which the attached conditions are given on the characteristics curves are transformed in such a manner that the Adomian decomposition method (ADM) can be applied. Some examples with closed-form solutions are studied in detail to further illustrate the proposed technique, and the results obtained indicate this approach is indeed practical and efficient.
文摘The superconvergence in the finite element method is a phenomenon in which the finite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and analyzed superconvergence of the conforming finite element method by L2-projections. The goal of this paper is to perform numerical experiments using MATLAB to support and to verify the theoretical results in Wang for the superconvergence of the conforming finite element method (CFEM) for the second order elliptic problems by L2-projection methods. MATLAB codes are published at https://github.com/annaleeharris/Superconvergence-CFEM for anyone to use and to study.