We used a chemical reduction method to synthesize the catalysts of cobalt(Co) and cobalt-ruthenium(Co-Ru) bifunctional supported on carbon nanotubes(CNTs) for Fischer–Tropsch synthesis(FTS) in a fixedbed reactor. The...We used a chemical reduction method to synthesize the catalysts of cobalt(Co) and cobalt-ruthenium(Co-Ru) bifunctional supported on carbon nanotubes(CNTs) for Fischer–Tropsch synthesis(FTS) in a fixedbed reactor. These Co-Ru/CNTs catalysts were synthesized with various weight proportions of Ru/Co(0.1 to 0.4 wt%) with keeping a fixed amount of cobalt(10 wt%). Moreover, for comparison purpose, CNTs supported Co-and Co(Ru)-based catalysts at same loading as the above catalysts were prepared through impregnation method. We characterize the present catalysts through the various techniques such as Energy–dispersive X-ray(EDX), Transmission Electron Microscopy(TEM), Brunauer–Emmett–Teller(BET),Hydrogen-Temperature-Programmed Reduction(H_2-TPR), Hydrogen-Temperature-Programmed Desorption(H_2-TPD) and O_2 titration. Thus using the chemical reduction method, a narrow particle size distribution was obtained so that the small cobalt particles were confined inside the CNTs. The Co-based catalyst prepared by impregnation was compared with the Co-Ru catalysts at the same loading. The results demonstrated that the use of chemical reduction method led to decrease the average Co oxide cluster size to8.7 nm so that the reduction enhanced about 24% and stabilized an earlier time at the stream. Among the prepared catalysts, the results indicated that the Co-Ru/CNTs catalysts demonstrated high catalytic activity with the highest long-chain hydrocarbons(C_(5+)), selectivity up to 74.76%, which was higher than those we obtained by the Co-Ru/γ-Al_2O_3(61._20%), Co/CNTs(43.68%) and Co/γ-Al_2O_3(37.69%). At the same time, comparing with those catalyst synthesized by impregnation, the use of chemical reduction led to enhancement of the C_(5+) selectivity from 59.30% to 68.83% and increment in FTS rate about 11% for the Co-Ru/CNTs catalyst.展开更多
Novel cobalt Fischer-Tropsch synthesis (FTS) catalysts were prepared from natural halloysite nanotubes (HNT) by double-solvent and wet- impregnation methods, and characterized by TEM, XRD, TPR and N2 adsorption-de...Novel cobalt Fischer-Tropsch synthesis (FTS) catalysts were prepared from natural halloysite nanotubes (HNT) by double-solvent and wet- impregnation methods, and characterized by TEM, XRD, TPR and N2 adsorption-desorption. Comparing with the catalyst prepared by wet- impregnation method, the catalyst prepared by double-solvent method reduces Co3O4 particle migration and agglomeration due to size-induced effect, thus showing higher catalytic activity for Fischer-Tropsch synthesis.展开更多
Using the highly accurate G4 method, we computed the thermodynamic data of 1287 possible reaction products under a wide range of reaction conditions in the Fischer-Tropcsh synthesis (FTS) process. These accurate therm...Using the highly accurate G4 method, we computed the thermodynamic data of 1287 possible reaction products under a wide range of reaction conditions in the Fischer-Tropcsh synthesis (FTS) process. These accurate thermodynamic data provide basic thermodynamic quantities for the actual chemical engineering process and are useful in analyzing product distribution because FTS demonstrates many features of an equilibrium-controlled system. Our results show that the number of thermodynamically allowed products to increase when lowering temperature, raising pressure, and raising H2/CO ratio. At low temperature, high pressure and high H2/CO ratio, many products are thermodynamically allowed and the selectivity of product has to be controlled by kinetic factors. On the other hand, high selectivity of lighter products can be realized in thermodynamics by raising temperature and lowering pressure. We found that the equilibrium product yield will reach a maximum and remain unchanged when lowering temperature, raising pressure, and raising H2/CO ratio to some limits, implying that optimizing reaction conditions has no effect on equilibrium product yields beyond these limits. The thermodynamic analysis is also useful in designing and evaluating FTS reaction mechanisms. We found that reaction pathways through formaldehyde should be discarded because of its extremely low equilibrium yield. Recently, in the FTS process using metal-oxide-zeolite catalysts for the highly selective production of C2-C4 olefins and aromatic hydrocarbons, there are several guesses on the possible reaction intermediates entering the zeolite channel. Our results show that ketene, methanol, and dimethyl ether are three possible reaction intermediates.展开更多
In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient proje...In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.展开更多
文摘We used a chemical reduction method to synthesize the catalysts of cobalt(Co) and cobalt-ruthenium(Co-Ru) bifunctional supported on carbon nanotubes(CNTs) for Fischer–Tropsch synthesis(FTS) in a fixedbed reactor. These Co-Ru/CNTs catalysts were synthesized with various weight proportions of Ru/Co(0.1 to 0.4 wt%) with keeping a fixed amount of cobalt(10 wt%). Moreover, for comparison purpose, CNTs supported Co-and Co(Ru)-based catalysts at same loading as the above catalysts were prepared through impregnation method. We characterize the present catalysts through the various techniques such as Energy–dispersive X-ray(EDX), Transmission Electron Microscopy(TEM), Brunauer–Emmett–Teller(BET),Hydrogen-Temperature-Programmed Reduction(H_2-TPR), Hydrogen-Temperature-Programmed Desorption(H_2-TPD) and O_2 titration. Thus using the chemical reduction method, a narrow particle size distribution was obtained so that the small cobalt particles were confined inside the CNTs. The Co-based catalyst prepared by impregnation was compared with the Co-Ru catalysts at the same loading. The results demonstrated that the use of chemical reduction method led to decrease the average Co oxide cluster size to8.7 nm so that the reduction enhanced about 24% and stabilized an earlier time at the stream. Among the prepared catalysts, the results indicated that the Co-Ru/CNTs catalysts demonstrated high catalytic activity with the highest long-chain hydrocarbons(C_(5+)), selectivity up to 74.76%, which was higher than those we obtained by the Co-Ru/γ-Al_2O_3(61._20%), Co/CNTs(43.68%) and Co/γ-Al_2O_3(37.69%). At the same time, comparing with those catalyst synthesized by impregnation, the use of chemical reduction led to enhancement of the C_(5+) selectivity from 59.30% to 68.83% and increment in FTS rate about 11% for the Co-Ru/CNTs catalyst.
基金supported by the National Natural Science foundation of China (21073238)the National Basic Research Program of China(2011CB211704)the Special Fund for Basic Scientific Research of Central Colleges,South-Central University for Nationalities
文摘Novel cobalt Fischer-Tropsch synthesis (FTS) catalysts were prepared from natural halloysite nanotubes (HNT) by double-solvent and wet- impregnation methods, and characterized by TEM, XRD, TPR and N2 adsorption-desorption. Comparing with the catalyst prepared by wet- impregnation method, the catalyst prepared by double-solvent method reduces Co3O4 particle migration and agglomeration due to size-induced effect, thus showing higher catalytic activity for Fischer-Tropsch synthesis.
基金the National Natural Science Foundation of China (No.91645201, No.21873019 and No.21573044).
文摘Using the highly accurate G4 method, we computed the thermodynamic data of 1287 possible reaction products under a wide range of reaction conditions in the Fischer-Tropcsh synthesis (FTS) process. These accurate thermodynamic data provide basic thermodynamic quantities for the actual chemical engineering process and are useful in analyzing product distribution because FTS demonstrates many features of an equilibrium-controlled system. Our results show that the number of thermodynamically allowed products to increase when lowering temperature, raising pressure, and raising H2/CO ratio. At low temperature, high pressure and high H2/CO ratio, many products are thermodynamically allowed and the selectivity of product has to be controlled by kinetic factors. On the other hand, high selectivity of lighter products can be realized in thermodynamics by raising temperature and lowering pressure. We found that the equilibrium product yield will reach a maximum and remain unchanged when lowering temperature, raising pressure, and raising H2/CO ratio to some limits, implying that optimizing reaction conditions has no effect on equilibrium product yields beyond these limits. The thermodynamic analysis is also useful in designing and evaluating FTS reaction mechanisms. We found that reaction pathways through formaldehyde should be discarded because of its extremely low equilibrium yield. Recently, in the FTS process using metal-oxide-zeolite catalysts for the highly selective production of C2-C4 olefins and aromatic hydrocarbons, there are several guesses on the possible reaction intermediates entering the zeolite channel. Our results show that ketene, methanol, and dimethyl ether are three possible reaction intermediates.
文摘In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.