Fish genetic breeding is a process that remolds heritable traits to obtain neotype and improved varieties.For the purpose of genetic improvement,researchers can select for desirable genetic traits,integrate a suite of...Fish genetic breeding is a process that remolds heritable traits to obtain neotype and improved varieties.For the purpose of genetic improvement,researchers can select for desirable genetic traits,integrate a suite of traits from different donors,or alter the innate genetic traits of a species.These improved varieties have,in many cases,facilitated the development of the aquaculture industry by lowering costs and increasing both quality and yield.In this review,we present the pertinent literatures and summarize the biological bases and application of selection breeding technologies(containing traditional selective breeding,molecular marker-assisted breeding,genome-wide selective breeding and breeding by controlling single-sex groups),integration breeding technologies(containing cross breeding,nuclear transplantation,germline stem cells and germ cells transplantation,artificial gynogenesis,artificial androgenesis and polyploid breeding)and modification breeding technologies(represented by transgenic breeding)in fish genetic breeding.Additionally,we discuss the progress our laboratory has made in the field of chromosomal ploidy breeding of fish,including distant hybridization,gynogenesis,and androgenesis.Finally,we systematically summarize the research status and known problems associated with each technology.展开更多
Aquaculture is one of the fastest developing agricultural industries worldwide.One of the most important factors for sustainable aquaculture is the development of high performing culture strains.Genome manipulation of...Aquaculture is one of the fastest developing agricultural industries worldwide.One of the most important factors for sustainable aquaculture is the development of high performing culture strains.Genome manipulation offers a powerful method to achieve rapid and directional breeding in fish.We review the history of fish breeding methods based on classical genome manipulation,including polyploidy breeding and nuclear transfer.Then,we discuss the advances and applications of fish directional breeding based on transgenic technology and recently developed genome editing technologies.These methods offer increased efficiency,precision and predictability in genetic improvement over traditional methods.展开更多
Improvement in fish feed conversion efficiency(FCE)is beneficial for sustaining global food fish supplies.Here,we show that a set of polymorphisms at locus of the corticotropin releasing hormone receptor 2(crhr2),whic...Improvement in fish feed conversion efficiency(FCE)is beneficial for sustaining global food fish supplies.Here,we show that a set of polymorphisms at locus of the corticotropin releasing hormone receptor 2(crhr2),which is involved in hypothalamuspituitary-interrenal(HPI)axis signaling,is associated with improved FCE in farmed allogynogenetic gibel carp strain CAS Ⅲ compared with that in the wild gibel carp strain Dongting(DT).This set of polymorphisms downregulates the expression levels of crhr2 mRNA in the brain and pituitary tissues in gibel carp strain CAS Ⅲ compared with those in strain DT.Furthermore,compromised HPI axis signaling is observed in gibel carp strain CAS Ⅲ,such as decreased α-melanocyte stimulating hormone protein levels,plasma cortisol content,and stress responses.Moreover,enhanced activation of protein kinase B/mammalian target of rapamycin complex 1 signaling observed in the muscle tissue of strain CAS Ⅲ in comparison to that in strain DT indicated elevated anabolic metabolism in strain CAS Ⅲ.Thus,these studies demonstrate that the genetic markers associated with compromised HPI axis signaling,such as crhr2,are potentially useful for genetic selection toward improvement in farmed fish growth and FCE,which would reduce fishmeal consumption and thereby indirectly facilitate sustainable fisheries.展开更多
基金supported by the Major International Cooperation Projects of the National Natural Science Foundation of China(31210103918)National Natural Science Foundation of China(31430088 and 31272651)+3 种基金National High Technology Research and Development Program of China(2011AA100403)Doctoral Fund of Ministry of Education of China(20114306130001)Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province(20134486)the Construct Program of the Key Discipline in Hunan Province and China
文摘Fish genetic breeding is a process that remolds heritable traits to obtain neotype and improved varieties.For the purpose of genetic improvement,researchers can select for desirable genetic traits,integrate a suite of traits from different donors,or alter the innate genetic traits of a species.These improved varieties have,in many cases,facilitated the development of the aquaculture industry by lowering costs and increasing both quality and yield.In this review,we present the pertinent literatures and summarize the biological bases and application of selection breeding technologies(containing traditional selective breeding,molecular marker-assisted breeding,genome-wide selective breeding and breeding by controlling single-sex groups),integration breeding technologies(containing cross breeding,nuclear transplantation,germline stem cells and germ cells transplantation,artificial gynogenesis,artificial androgenesis and polyploid breeding)and modification breeding technologies(represented by transgenic breeding)in fish genetic breeding.Additionally,we discuss the progress our laboratory has made in the field of chromosomal ploidy breeding of fish,including distant hybridization,gynogenesis,and androgenesis.Finally,we systematically summarize the research status and known problems associated with each technology.
基金supported by the National Basic Research Program of China(2010CB126306,2012CB944504)the National Science Fund for Excellent Young Scholars of the National Natural Science Foundation of China(31222052)+1 种基金the Chinese Academy of Sciences Grant KSCX2-EW-N-004-4the State Key Laboratory of Freshwater Ecology and Biotechnology grant 2011FBZ23
文摘Aquaculture is one of the fastest developing agricultural industries worldwide.One of the most important factors for sustainable aquaculture is the development of high performing culture strains.Genome manipulation offers a powerful method to achieve rapid and directional breeding in fish.We review the history of fish breeding methods based on classical genome manipulation,including polyploidy breeding and nuclear transfer.Then,we discuss the advances and applications of fish directional breeding based on transgenic technology and recently developed genome editing technologies.These methods offer increased efficiency,precision and predictability in genetic improvement over traditional methods.
基金supported by the National Key Research and Development Program of China(2018YFD0900404)the Pilot Program A Project from the Chinese Academy of Sciences(XDA24010206)+2 种基金State Key Laboratory of Freshwater Ecology and Biotechnology(2019FBZ05)the National Natural Science Foundation of China(31530077)China Postdoctoral Science Foundation(2020M682527)。
文摘Improvement in fish feed conversion efficiency(FCE)is beneficial for sustaining global food fish supplies.Here,we show that a set of polymorphisms at locus of the corticotropin releasing hormone receptor 2(crhr2),which is involved in hypothalamuspituitary-interrenal(HPI)axis signaling,is associated with improved FCE in farmed allogynogenetic gibel carp strain CAS Ⅲ compared with that in the wild gibel carp strain Dongting(DT).This set of polymorphisms downregulates the expression levels of crhr2 mRNA in the brain and pituitary tissues in gibel carp strain CAS Ⅲ compared with those in strain DT.Furthermore,compromised HPI axis signaling is observed in gibel carp strain CAS Ⅲ,such as decreased α-melanocyte stimulating hormone protein levels,plasma cortisol content,and stress responses.Moreover,enhanced activation of protein kinase B/mammalian target of rapamycin complex 1 signaling observed in the muscle tissue of strain CAS Ⅲ in comparison to that in strain DT indicated elevated anabolic metabolism in strain CAS Ⅲ.Thus,these studies demonstrate that the genetic markers associated with compromised HPI axis signaling,such as crhr2,are potentially useful for genetic selection toward improvement in farmed fish growth and FCE,which would reduce fishmeal consumption and thereby indirectly facilitate sustainable fisheries.