Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussi...Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussian mixture model(DLCGMM) for multimode process monitoring is proposed for multimode process monitoring by integrating LCGMM with modified local Fisher discriminant analysis(MLFDA). Different from Fisher discriminant analysis(FDA) that aims to discover the global optimal discriminant directions, MLFDA is capable of uncovering multimodality and local structure of the data by exploiting the posterior probabilities of observations within clusters calculated from the results of LCGMM. This may enable MLFDA to capture more meaningful discriminant information hidden in the high-dimensional multimode observations comparing to FDA. Contrary to most existing multimode process monitoring approaches, DLCGMM performs LCGMM and MFLDA iteratively, and the optimal subspaces with multi-Gaussianity and the optimal discriminant projection vectors are simultaneously achieved in the framework of supervised and unsupervised learning. Furthermore, monitoring statistics are established on each cluster that represents a specific operation condition and two global Bayesian inference-based fault monitoring indexes are established by combining with all the monitoring results of all clusters. The efficiency and effectiveness of the proposed method are evaluated through UCI datasets, a simulated multimode model and the Tennessee Eastman benchmark process.展开更多
In this paper,we propose a new algorithm to extend support vector machine(SVM)for binary classification to multicategory classification.The proposed method is based on a sequential binary classification algorithm.We f...In this paper,we propose a new algorithm to extend support vector machine(SVM)for binary classification to multicategory classification.The proposed method is based on a sequential binary classification algorithm.We first classify a target class by excluding the possibility of labeling as any other classes using a forward step of sequential SVM;we then exclude the already classified classes and repeat the same procedure for the remaining classes in a backward step.The proposed algorithm relies on SVM for each binary classification and utilizes only feasible data in each step;therefore,the method guarantees convergence and entails light computational burden.We prove Fisher consistency of the proposed forward–backward SVM(FB-SVM)and obtain a stochastic bound for the predicted misclassification rate.We conduct extensive simulations and analyze real-world data to demonstrate the superior performance of FB-SVM,for example,FB-SVM achieves a classification accuracy much higher than the current standard for predicting conversion from mild cognitive impairment to Alzheimer’s disease.展开更多
基金Supported by the National Natural Science Foundation of China(61273167)
文摘Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussian mixture model(DLCGMM) for multimode process monitoring is proposed for multimode process monitoring by integrating LCGMM with modified local Fisher discriminant analysis(MLFDA). Different from Fisher discriminant analysis(FDA) that aims to discover the global optimal discriminant directions, MLFDA is capable of uncovering multimodality and local structure of the data by exploiting the posterior probabilities of observations within clusters calculated from the results of LCGMM. This may enable MLFDA to capture more meaningful discriminant information hidden in the high-dimensional multimode observations comparing to FDA. Contrary to most existing multimode process monitoring approaches, DLCGMM performs LCGMM and MFLDA iteratively, and the optimal subspaces with multi-Gaussianity and the optimal discriminant projection vectors are simultaneously achieved in the framework of supervised and unsupervised learning. Furthermore, monitoring statistics are established on each cluster that represents a specific operation condition and two global Bayesian inference-based fault monitoring indexes are established by combining with all the monitoring results of all clusters. The efficiency and effectiveness of the proposed method are evaluated through UCI datasets, a simulated multimode model and the Tennessee Eastman benchmark process.
基金This work is supported by NIH Grants R01GM124104,NS073671,NS082062,NUL1 RR025747Alzheimer’s Disease Neuroimaging Initiative(ADNI)(U01 AG024904,DOD ADNI,W81XWH-12-2-0012),and a pilot award from the Gillings Innovation Lab at the University of North Carolina.The authors acknowledge the investigators within the ADNI who contributed to the design and implementation of ADNI.
文摘In this paper,we propose a new algorithm to extend support vector machine(SVM)for binary classification to multicategory classification.The proposed method is based on a sequential binary classification algorithm.We first classify a target class by excluding the possibility of labeling as any other classes using a forward step of sequential SVM;we then exclude the already classified classes and repeat the same procedure for the remaining classes in a backward step.The proposed algorithm relies on SVM for each binary classification and utilizes only feasible data in each step;therefore,the method guarantees convergence and entails light computational burden.We prove Fisher consistency of the proposed forward–backward SVM(FB-SVM)and obtain a stochastic bound for the predicted misclassification rate.We conduct extensive simulations and analyze real-world data to demonstrate the superior performance of FB-SVM,for example,FB-SVM achieves a classification accuracy much higher than the current standard for predicting conversion from mild cognitive impairment to Alzheimer’s disease.