期刊文献+
共找到1,256篇文章
< 1 2 63 >
每页显示 20 50 100
基于炎性细胞因子构建的Fisher判别函数对抑郁障碍诊断的辅助作用
1
作者 贾海玲 杨永涛 +4 位作者 崔利军 郭艳梅 严保平 崔伟 孙秀丽 《四川精神卫生》 2024年第4期312-316,共5页
背景目前,基于症状学的抑郁障碍诊断方式受临床医生经验的主观因素影响较大。寻找更加准确可靠的定量诊断方法是当前亟待解决的问题。目的探讨基于炎性细胞因子构建的Fisher判别函数在抑郁障碍诊断中的价值,为抑郁障碍的诊断提供参考。... 背景目前,基于症状学的抑郁障碍诊断方式受临床医生经验的主观因素影响较大。寻找更加准确可靠的定量诊断方法是当前亟待解决的问题。目的探讨基于炎性细胞因子构建的Fisher判别函数在抑郁障碍诊断中的价值,为抑郁障碍的诊断提供参考。方法选取2020年4月—11月在河北省精神卫生中心住院治疗的、符合《精神障碍诊断与统计手册(第5版)》(DSM-5)抑郁障碍诊断标准的136例患者为研究组,同期招募与研究组年龄和性别相匹配的67例健康被试为对照组。使用酶联免疫吸附试验(ELISA)检测受试者血清炎性细胞因子水平。采用Fisher判别模型对研究组与对照组存在统计学差异的炎性细胞因子建立判别函数并进行验证。结果研究组促炎细胞因子白细胞介素1β(IL-1β)、白细胞介素6(IL-6)、干扰素γ(INF-γ)、肿瘤坏死因子α(TNF-α)水平均高于对照组,差异均有统计学意义(U=9.115、5.239、4.431、5.428,P均<0.01);研究组抗炎细胞因子白细胞介素4(IL-4)、白细胞介素10(IL-10)、白细胞介素13(IL-13)水平均低于对照组,差异均有统计学意义(U=7.398、7.331、7.614,P均<0.01)。Fisher判别函数回代性检验正确判别率为89.66%,交叉验证正确判别率为88.67%。结论本文构建的Fisher判别函数对抑郁障碍的诊断可能具有较好的辅助作用。 展开更多
关键词 抑郁障碍 炎性细胞因子 fisher判别函数 诊断
下载PDF
三维荧光光谱融合小波包分解融合Fisher判别分析及支持向量机识别紫苏 被引量:1
2
作者 任永杰 殷勇 +1 位作者 于慧春 袁云霞 《食品科学》 EI CAS CSCD 北大核心 2024年第1期198-203,共6页
为实现紫苏品种的快速鉴别,避免以次充好,选取4个品种的紫苏采集三维荧光数据,提出了一种基于小波包分解融合Fisher判别分析(Fisher discriminant analysis,FDA)的荧光数据特征选择策略,并实施了4种紫苏的有效鉴别。首先,对三维荧光数... 为实现紫苏品种的快速鉴别,避免以次充好,选取4个品种的紫苏采集三维荧光数据,提出了一种基于小波包分解融合Fisher判别分析(Fisher discriminant analysis,FDA)的荧光数据特征选择策略,并实施了4种紫苏的有效鉴别。首先,对三维荧光数据进行预处理,采用Delaunay三角形内插值法去除瑞利散射和拉曼散射,以消除它们的不利影响;运用Savitzky-Golar卷积平滑对数据进行平滑处理,以减少噪声的干扰。同时,对三维荧光数据进行初步筛选,去除了荧光强度小于0.01的发射波长。然后,对各激发波长对应的发射光谱进行3层sym4小波包分解,计算得到最低频段的小波包能量值,作为各激发波长光谱数据表征量。接着,再利用FDA对小波包能量进行判别分析,将其所包含的差异性信息进行融合,得到FDA生成的新变量,并选取累计判别能力达到99%的前3个FD变量作为不同品种差异性信息的表征变量,提出三维荧光数据的表征策略。最后,利用BP神经网络(backpropagation neural network,BPNN)和支持向量机(support vector machine,SVM)两种模式识别算法对表征变量进行分析,得到FDA+BPNN和FDA+SVM两种鉴别结果。FDA+BPNN的训练集正确率为97.5%,测试集正确率为95%;FDA+SVM的训练集和测试集的正确率均达到98.33%。结果表明,三维荧光光谱技术结合小波包分解、FDA和SVM算法基本上能够实现紫苏品种的鉴别。这为后续有关紫苏的进一步检测研究(如某些有效成分的定量检测)提供了研究基础。 展开更多
关键词 紫苏 三维荧光 小波包分解 fisher判别分析 BP神经网络 支持向量机
下载PDF
Predicting pillar stability for underground mine using Fisher discriminant analysis and SVM methods 被引量:16
3
作者 周健 李夕兵 +2 位作者 史秀志 魏威 吴帮标 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2734-2743,共10页
The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability ... The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines. 展开更多
关键词 underground mine pillar stability fisher discriminant analysis (FDA) support vector machines sVMs PREDICTION
下载PDF
基于Fisher判别分析可分性信息融合的马铃薯VC含量高光谱检测方法
4
作者 郭林鸽 殷勇 +1 位作者 于慧春 袁云霞 《食品科学》 EI CAS CSCD 北大核心 2024年第7期164-171,共8页
为提高马铃薯VC含量检测结果的准确性和可靠性,提出一种基于Fisher判别分析(Fisher discriminant analysis,FDA)可分性数据融合的检测模型输入变量构建方法。首先,利用高光谱成像技术采集200个马铃薯的高光谱信息,通过对比6种预处理方... 为提高马铃薯VC含量检测结果的准确性和可靠性,提出一种基于Fisher判别分析(Fisher discriminant analysis,FDA)可分性数据融合的检测模型输入变量构建方法。首先,利用高光谱成像技术采集200个马铃薯的高光谱信息,通过对比6种预处理方法和原始数据的建模结果,确定多元散射校正为光谱数据的预处理方法;其次,采用竞争性自适应重加权采样(competitive adaptive reweighted sampling,CARS)、连续投影算法(successive projections algorithm,SPA)及CARS-SPA组合算法3种方法提取相应特征波长,通过对比分析最终确定34个有效特征波长;然后,将有效特征波长进行FDA可分性数据融合,根据融合的新变量对样本间差异性判别能力的大小进行筛选,确定构建检测模型的输入变量;最后,分别对FDA融合前后筛选的变量建立偏最小二乘模型和反向传播神经网络(back propagation neural network,BPNN)模型,并对检测结果进行对比分析。结果表明,将CARS算法提取的34个特征波长进行FDA融合,采用前3个融合变量作为构建检测模型的输入变量时,其所建BPNN模型的相关系数由0.9726提高至0.9990,均方根误差由0.7723降低至0.1727,不仅能够极大地降低数据分析维度,而且能够提高检测结果的准确性。因此,基于FDA可分性数据融合构建检测模型输入变量可以提高马铃薯VC含量检测结果的准确性。 展开更多
关键词 高光谱成像 fisher判别分析 马铃薯 VC含量检测 模型
下载PDF
Fisher判别函数在足迹分析性别中的应用
5
作者 王东 张建功 汤澄清 《科技创新与生产力》 2024年第4期117-120,124,共5页
结合脚型性别差异研究,为了选取出足迹上与性别显著相关的特征,以便通过Fisher判别法建立函数模型,本研究测量了共7个与性别显著相关的几何特征,通过T检验和Fisher判别法建立了模型;利用Fisher判别分析建立了典则判别函数和Fisher线性... 结合脚型性别差异研究,为了选取出足迹上与性别显著相关的特征,以便通过Fisher判别法建立函数模型,本研究测量了共7个与性别显著相关的几何特征,通过T检验和Fisher判别法建立了模型;利用Fisher判别分析建立了典则判别函数和Fisher线性判别函数。实验结果显示,选取的特征对模型影响显著,函数模型预测准确率为92.3%。该判别函数模型可以显著提高足迹分析性别的准确率,可为技术侦查提供帮助。 展开更多
关键词 足迹 几何特征 fisher判别分析 性别预测
下载PDF
改进Fisher判别法的突水水源快速判别模型
6
作者 韩泰然 李昂 刘军亮 《能源与环保》 2024年第3期28-34,共7页
为快速有效地判别矿井突水水源位置,预防水害事故的发生,根据平煤五矿实际水文地质特征,针对砂岩、太灰和寒灰含水层水质差异性,收集34组水样资料,并选取K^(+)+Na^(+)、Ca^(2+)、Mg^(2+)、SO_(4)^(2-)、Cl^(-)、HCO_(3)^(-)六大常规水... 为快速有效地判别矿井突水水源位置,预防水害事故的发生,根据平煤五矿实际水文地质特征,针对砂岩、太灰和寒灰含水层水质差异性,收集34组水样资料,并选取K^(+)+Na^(+)、Ca^(2+)、Mg^(2+)、SO_(4)^(2-)、Cl^(-)、HCO_(3)^(-)六大常规水化学离子作为判别因子,开展水化学特征分析;结合PCA降维统计算法,建立改进的Fisher水源判别模型,并利用待测样本对比改进前后Fisher模型的判别结果,同时将训练样本回代到改进模型中进行验证。结果表明,根据水化学类型无法准确区分寒灰水与太灰水;利用改进Fisher判别模型测试10组待测样本,判别准确率为100%,相较于基础Fisher模型,准确率提高了20%,应用改进Fisher判别模型可大幅提升水源识别准确率;已知训练样本的回代结果显示,改进Fisher判别结果与实际情况基本吻合。通过2种模型的对比分析,采用改进Fisher模型进行矿井水源识别准确率及可靠性高,具有一定研究价值,可为矿井水源识别提供新的思路。 展开更多
关键词 突水水源 fisher判别模型 水源识别 主成分分析
下载PDF
基于Kernel Fisher Discriminant的JPEG文件隐形信息检测算法 被引量:2
7
作者 潘晓声 黄继风 《微计算机应用》 2005年第5期567-570,共4页
隐秘信息分析的目的是正确的分辨出文件中是否带有隐藏的信息。自然图像和隐秘图像的DCT系数经过差分之后,它们的直方图会呈现不同的规律,以此为特征向量,来检测JPEG图像是否带有隐藏信息。并通过对低隐藏信息量的JPEG图像进一步分析,... 隐秘信息分析的目的是正确的分辨出文件中是否带有隐藏的信息。自然图像和隐秘图像的DCT系数经过差分之后,它们的直方图会呈现不同的规律,以此为特征向量,来检测JPEG图像是否带有隐藏信息。并通过对低隐藏信息量的JPEG图像进一步分析,发现采用线性核函数的核Fisher判别有着较好的检测性能。实验结果表明,本文的算法有效。 展开更多
关键词 数字信息隐写术 隐秘分析术 自然图像 隐秘图像 fisher线性判别 fisher判别 fisher判别 JPEG文件 检测算法 信息分析
下载PDF
Fault Diagnosis in Chemical Process Based on Self-organizing Map Integrated with Fisher Discriminant Analysis 被引量:16
8
作者 陈心怡 颜学峰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期382-387,共6页
Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In ord... Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process. 展开更多
关键词 self-organizing maps fisher discriminant analysis fault diagnosis MONITORING Tennessee Eastman process
下载PDF
Fault Diagnosis for Batch Processes by Improved Multi-model Fisher Discriminant Analysis 被引量:8
9
作者 蒋丽英 谢磊 王树青 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第3期343-348,共6页
Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch trajectory can be obtained till the end of its operation. In or... Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch trajectory can be obtained till the end of its operation. In order to overcome the need for estimated or filled up future unmeasured values in the online fault diagnosis, sufficiently utilize the finite information of faults, and enhance the diagnostic performance, an improved multi-model Fisher discriminant analysis is represented. The trait of the proposed method is that the training data sets are made of the current measured information and the past major discriminant information, and not only the current information or the whole batch data. An industrial typical multi-stage streptomycin fermentation process is used to test the performance of fault diagnosis of the proposed method. 展开更多
关键词 fault diagnosis fisher discriminant analysis batch processes
下载PDF
Fisher discriminant analysis model and its application for prediction of classification of rockburst in deep-buried long tunnel 被引量:9
10
作者 ZHOU Jian SHI Xiu-zhi +2 位作者 DONG Lei HU Hai-yan WANG Huai-yong 《Journal of Coal Science & Engineering(China)》 2010年第2期144-149,共6页
A Fisher discriminant analysis (FDA) model for the prediction of classification of rockburst in deep-buried long tunnel was established based on the Fisher discriminant theory and the actual characteristics of the p... A Fisher discriminant analysis (FDA) model for the prediction of classification of rockburst in deep-buried long tunnel was established based on the Fisher discriminant theory and the actual characteristics of the project. First, the major factors of rockburst, such as the maximum tangential stress of the cavern wall σθ, uniaxial compressive strength σc, uniaxial tensile strength or, and the elastic energy index of rock Wet, were taken into account in the analysis. Three factors, Stress coefficient σθ/σc, rock brittleness coefficient σc/σt, and elastic energy index Wet, were defined as the criterion indices for rockburst prediction in the proposed model. After training and testing of 12 sets of measured data, the discriminant functions of FDA were solved, and the ratio of misdiscrimina- tion is zero. Moreover, the proposed model was used to predict rockbursts of Qinling tunnel along Xi'an-Ankang railway. The results show that three forecast results are identical with the actual situation. Therefore, the prediction accuracy of the FDA model is acceptable. 展开更多
关键词 deep-buried tunnel ROCKBURsT CLAssIFICATION fisher discriminant analysis model
下载PDF
Fault Diagnosis for Batch Processes by Improved Multi-model Fisher Discriminant Analysis 被引量:1
11
作者 蒋丽英 谢磊 王树青 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第3X期343-348,共6页
关键词 FAULT diagnosis fisher discriminant analysis BATCH processes
下载PDF
Cobalt crust recognition based on kernel Fisher discriminant analysis and genetic algorithm in reverberation environment 被引量:2
12
作者 ZHAO Hai-ming ZHAO Xiang +1 位作者 HAN Feng-lin WANG Yan-li 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期179-193,共15页
Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust min... Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust mining area,a method based on multiple-feature sets is proposed.Features of the target echoes are extracted by linear prediction method and wavelet analysis methods,and the linear prediction coefficient and linear prediction cepstrum coefficient are also extracted.Meanwhile,the characteristic matrices of modulus maxima,sub-band energy and multi-resolution singular spectrum entropy are obtained,respectively.The resulting features are subsequently compressed by kernel Fisher discriminant analysis(KFDA),the output features are selected using genetic algorithm(GA)to obtain optimal feature subsets,and recognition results of classifier are chosen as genetic fitness function.The advantages of this method are that it can describe the signal features more comprehensively and select the favorable features and remove the redundant features to the greatest extent.The experimental results show the better performance of the proposed method in comparison with only using KFDA or GA. 展开更多
关键词 feature extraction kernel fisher discriminant analysis(KFDA) genetic algorithm multiple feature sets cobalt crust recognition
下载PDF
Subspace Semi-supervised Fisher Discriminant Analysis 被引量:5
13
作者 YANG Wu-Yi LIANG Wei +1 位作者 XIN Le ZHANG Shu-Wu 《自动化学报》 EI CSCD 北大核心 2009年第12期1513-1519,共7页
关键词 费希尔判别分析法 鉴别分析 离散度 降维方法
下载PDF
A computer aided detection framework for mammographic images using fisher linear discriminant and nearest neighbor classifier
14
作者 Memuna Sarfraz Fadi Abu-Amara Ikhlas Abdel-Qader 《Journal of Biomedical Science and Engineering》 2012年第6期323-329,共7页
Today, mammography is the best method for early detection of breast cancer. Radiologists failed to detect evident cancerous signs in approximately 20% of false negative mammograms. False negatives have been identified... Today, mammography is the best method for early detection of breast cancer. Radiologists failed to detect evident cancerous signs in approximately 20% of false negative mammograms. False negatives have been identified as the inability of the radiologist to detect the abnormalities due to several reasons such as poor image quality, image noise, or eye fatigue. This paper presents a framework for a computer aided detection system that integrates Principal Component Analysis (PCA), Fisher Linear Discriminant (FLD), and Nearest Neighbor Classifier (KNN) algorithms for the detection of abnormalities in mammograms. Using normal and abnormal mammograms from the MIAS database, the integrated algorithm achieved 93.06% classification accuracy. Also in this paper, we present an analysis of the integrated algorithm’s parameters and suggest selection criteria. 展开更多
关键词 Principal COMPONENT Analysis fisher Linear discriminant Nearest NEIGHBOR CLAssIFIER
下载PDF
Threshold Selection Study on Fisher Discriminant Analysis Used in Exon Prediction for Unbalanced Data Sets
15
作者 Yutao Ma Yanbing Fang +1 位作者 Ping Liu Jianfu Teng 《Communications and Network》 2013年第3期601-605,共5页
In gene prediction, the Fisher discriminant analysis (FDA) is used to separate protein coding region (exon) from non-coding regions (intron). Usually, the positive data set and the negative data set are of the same si... In gene prediction, the Fisher discriminant analysis (FDA) is used to separate protein coding region (exon) from non-coding regions (intron). Usually, the positive data set and the negative data set are of the same size if the number of the data is big enough. But for some situations the data are not sufficient or not equal, the threshold used in FDA may have important influence on prediction results. This paper presents a study on the selection of the threshold. The eigen value of each exon/intron sequence is computed using the Z-curve method with 69 variables. The experiments results suggest that the size and the standard deviation of the data sets and the threshold are the three key elements to be taken into consideration to improve the prediction results. 展开更多
关键词 fisher discriminant Analysis THREsHOLD selection Gene PREDICTION Z-Curve size of Data set
下载PDF
Kernel-based fisher discriminant analysis for hyperspectral target detection
16
作者 谷延锋 张晔 由迪 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第1期49-53,共5页
A new method based on kernel Fisher discriminant analysis (KFDA) is proposed for target detection of hyperspectral images. The KFDA combines kernel mapping derived from support vector machine and the classical linea... A new method based on kernel Fisher discriminant analysis (KFDA) is proposed for target detection of hyperspectral images. The KFDA combines kernel mapping derived from support vector machine and the classical linear Fisher discriminant analysis (LFDA), and it possesses good ability to process nonlinear data such as hyperspectral images. According to the Fisher rule that the ratio of the between-class and within-class scatters is maximized, the KFDA is used to obtain a set of optimal discriminant basis vectors in high dimensional feature space, All pixels in the hyperspectral images are projected onto the discriminant basis vectors and the target detection is performed according to the projection result. The numerical experiments are performed on hyperspectral data with 126 bands collected by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Tbe experimental results show the effectiveness of the proposed detection method and prove that this method has good ability to overcome small sample size and spectral variability in the hyperspectral target detection. 展开更多
关键词 hyperspeetrai image target detection fisher discriminant analysis
下载PDF
On-line Batch Process Monitoring and Diagnosing Based on Fisher Discriminant Analysis
17
作者 赵旭 邵惠鹤 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第3期307-312,316,共7页
A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensi... A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensitive to fault detection and stronger implement for monitoring. In order to improve the monitoring performance, the variables trajectories of batch process are separated into several blocks. The key to the proposed approach for on-line monitoring is to calculate the distance of block data that project to low-dimension Fisher space between new batch and reference batch. Comparing the distance with the predefine threshold, it can be considered whether the batch process is normal or abnormal. Fault diagnosis is performed based on the weights in fault direction calculated by FDA. The proposed method was applied to the simulation model of fed-batch penicillin fermentation and the resuits were compared with those obtained using MPCA. The simulation results clearly show that the on-line monitoring method based on FDA is more efficient than the MPCA. 展开更多
关键词 batch process on-line process monitoring fault diagnosis fisher discriminant analysis (FDA) multiway principal component analysis (MPCA)
下载PDF
基于Fisher判别法的岱庄矿涌(突)水水源识别 被引量:3
18
作者 刘德民 顾爱民 《煤炭技术》 CAS 北大核心 2023年第4期94-97,共4页
由于岱庄矿十下灰、十三灰和奥灰水源水质根据目前常规水质化验资料无明显的区别元素,容易产生误判。为实现对岱庄矿涌水水源的准确识别,在收集该矿地质及水文地质资料的基础上,首先对主要涌水含水层水化学特征进行分析,其次选取Na^(+)+... 由于岱庄矿十下灰、十三灰和奥灰水源水质根据目前常规水质化验资料无明显的区别元素,容易产生误判。为实现对岱庄矿涌水水源的准确识别,在收集该矿地质及水文地质资料的基础上,首先对主要涌水含水层水化学特征进行分析,其次选取Na^(+)+K^(+),Ca^(2+),Mg^(2+),Cl^(-),SO_(4)^(2-),HCO_(3)^(-)这6种特征离子含量作为Fisher判别分析的因子,随后利用SPSS25.0软件建立岱庄矿涌水水源Fisher判别函数模型,最后选取该矿3组测试水样对模型进行验证。结果表明:利用Fisher判别分析理论建立的涌水水源识别模型,可准确识别这些水质相近的涌水水源,回代准确率达91.3%,3组测试水样判别结果也与工程实际情况一致,表明此模型在岱庄矿涌水防治上具有一定的指导意义。 展开更多
关键词 fisher判别 水源识别 水化学特征 sPss
下载PDF
基于Fisher判别法的中药材品种与产地的鉴别方法研究
19
作者 王佳妮 王积建 《科技通报》 2023年第2期39-45,83,共8页
为了探索应用红外光谱技术鉴别中药材的品种和产地,本文以红外光谱数据为依据,首先通过离群点分析剔除奇异样品,使用移动平均法对原始数据做平滑处理,使用一阶差分或高阶差分消除分化现象,使用标准差法降维。其次使用经典的Fisher判别... 为了探索应用红外光谱技术鉴别中药材的品种和产地,本文以红外光谱数据为依据,首先通过离群点分析剔除奇异样品,使用移动平均法对原始数据做平滑处理,使用一阶差分或高阶差分消除分化现象,使用标准差法降维。其次使用经典的Fisher判别法对中药材的品种和产地进行了判别,模拟精度达到了100%,预测精度在89.23%~100%之间。 展开更多
关键词 fisher判别分析 中药材 品种 产地
下载PDF
室内POI显著度评价的Fisher判别法模型
20
作者 李华蓉 郑嘉欣 李天童 《测绘学报》 EI CSCD 北大核心 2023年第4期679-688,共10页
随着社会经济的快速发展,大型建筑物内部结构越来越复杂,室内空间的位置服务愈显重要。地标作为室内空间中的基础要素,能够帮助人们在室内认清方向和定位。但是,现有的室内地标的选取方式大多牵引于室外准则,未考虑室内POI独有的特点,... 随着社会经济的快速发展,大型建筑物内部结构越来越复杂,室内空间的位置服务愈显重要。地标作为室内空间中的基础要素,能够帮助人们在室内认清方向和定位。但是,现有的室内地标的选取方式大多牵引于室外准则,未考虑室内POI独有的特点,导致所选取出的地标与用户的认知不匹配。针对这一问题,本文在室内空间POI显著度影响因素探究试验基础上,采用Fisher判别法(FDA)对试验数据进行语义信息量化、构建模型、模型回判和交叉互判处理,确定了室内POI显著度评价模型,并用于室内地标的提取。结果表明,建立的判别模型对室内POI显著度的判别和分级效果显著,选取出的地标能够与用户认知结果相一致。 展开更多
关键词 空间认知 室内空间 显著度模型 POI fisher判别分析
下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部