期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于核函数的在线序列ELM算法的姿态识别
被引量:
1
1
作者
韩莹
张浩
+1 位作者
刘健
陈立平
《微电子学与计算机》
CSCD
北大核心
2018年第1期91-95,共5页
姿态识别是许多应用的基础(医学、运动、游戏、安全).传统的识别算法采用批学习的方式去训练网络,但是数据量庞大且数据不会一次性获取,这会导致这类算法花费大量的学习时间且网络权重也不能在线更新.对此利用一种基于核函数的在线序列...
姿态识别是许多应用的基础(医学、运动、游戏、安全).传统的识别算法采用批学习的方式去训练网络,但是数据量庞大且数据不会一次性获取,这会导致这类算法花费大量的学习时间且网络权重也不能在线更新.对此利用一种基于核函数的在线序列极限学习机OS-KELM(Online Sequential Kernel Extreme Learning Machine)算法实现人体姿态的分类识别.为降低学习难度和提高学习效率,使用了基于Fisher准则和特征聚类的方法进行特征选择.用手机的三轴加速度计和陀螺仪数据识别人走路、下楼、上楼、站立、坐和躺下的姿态,平均识别精度达到91.89%.
展开更多
关键词
在线序列ELM
核函数
人类姿态识别
模式识别Fisher准则
特征聚类
下载PDF
职称材料
题名
基于核函数的在线序列ELM算法的姿态识别
被引量:
1
1
作者
韩莹
张浩
刘健
陈立平
机构
中国科学院微电子研究所
北京科技大学计算机与通信工程学院
出处
《微电子学与计算机》
CSCD
北大核心
2018年第1期91-95,共5页
基金
国家重大专项(2015ZX03001013-002)
文摘
姿态识别是许多应用的基础(医学、运动、游戏、安全).传统的识别算法采用批学习的方式去训练网络,但是数据量庞大且数据不会一次性获取,这会导致这类算法花费大量的学习时间且网络权重也不能在线更新.对此利用一种基于核函数的在线序列极限学习机OS-KELM(Online Sequential Kernel Extreme Learning Machine)算法实现人体姿态的分类识别.为降低学习难度和提高学习效率,使用了基于Fisher准则和特征聚类的方法进行特征选择.用手机的三轴加速度计和陀螺仪数据识别人走路、下楼、上楼、站立、坐和躺下的姿态,平均识别精度达到91.89%.
关键词
在线序列ELM
核函数
人类姿态识别
模式识别Fisher准则
特征聚类
Keywords
online sequential ELM
kernel function
human activity recognition
pattern recognition
fishercriterion
feature clustering
分类号
TP31 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于核函数的在线序列ELM算法的姿态识别
韩莹
张浩
刘健
陈立平
《微电子学与计算机》
CSCD
北大核心
2018
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部