期刊文献+
共找到32,591篇文章
< 1 2 250 >
每页显示 20 50 100
IMPROVING THE SIMULATION EFFICIENCY IN FIVE-AXIS MILLING BY USING AN ADVANCED OCTREE AND AN IMPLICIT FORMULA OF A GENERALIZED CUTTER 被引量:3
1
作者 WANG Hongliang GUO Ruifeng 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2013年第5期735-756,共22页
This paper presents an advanced octree(AO-rep) model and an implicit formula of a generalized cutter model for five-axis milling simulation.First,the main ideal of the AO-rep model is building a hierarchical structure... This paper presents an advanced octree(AO-rep) model and an implicit formula of a generalized cutter model for five-axis milling simulation.First,the main ideal of the AO-rep model is building a hierarchical structure and representing solid volumes.The AO-rep model utilizes an octree to cull unrelated voxels,and generates a small-scale voxel model in grey octants when a cutter intersects these octants.Using a simplified intersection computation between a cube and triangles in E^3,an STL model can be converted into its AO-rep model at a preprocessing stage.Second,the authors formulate an implicit function of a generalized cutter in moving cutter frame,and determine the function in fixed workpiece frame using the theory of a rigid body motion.Finally,the authors make a simulation of machining an impeller.The result shows that the proposed approach has a high performance of time and space. 展开更多
关键词 five-axis milling simulation frame IMPLICIT OCTREE STL.
原文传递
Effects of Milling Methods on Rice Flour Properties and Rice Product Quality:A Review
2
作者 TIAN Yu SUN Jing +7 位作者 LI Jiaxin WANG Aixia NIE Mengzi GONG Xue WANG Lili LIU Liya WANG Fengzhong TONG Litao 《Rice science》 SCIE CSCD 2024年第1期33-46,共14页
High-quality rice flour is the foundation for the production of various rice-based products.Milling is an essential step in obtaining rice flour,during which significant changes occur in the physicochemical and qualit... High-quality rice flour is the foundation for the production of various rice-based products.Milling is an essential step in obtaining rice flour,during which significant changes occur in the physicochemical and quality characteristics of the flour.Although rice flour obtained through mainstream wet milling methods exhibits superior quality,low production efficiency and wastewater discharge limit the development of the industry.Dry milling,on the other hand,conserves water resources,but adversely affects flour performance due to excessive heat generation.As an emerging powder-making technique,semi-dry milling offers a promising solution by enhancing flour quality and reducing environmental impact.This is achieved by minimizing soaking time through hot air treatment while reducing mechanical energy consumption to reach saturated water absorption levels.However,continuous production remains a challenge.This comprehensive review summarizes the effects of various milling technologies on rice flour properties and product qualities.It also discusses key control indicators and technical considerations for rice flour processing equipment and processes. 展开更多
关键词 flour property milling equipment milling method rice flour rice product quality semi-dry milling
下载PDF
Balanced Fracturing and Cold-welding of Magnesium during Ball Milling Assisted by Carbon Coating:Experimental and Molecular Dynamic Simulation
3
作者 韩宗盈 DONG Hui +2 位作者 DING Guoyang ZHANG Jiale SONG Xiufang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期895-903,共9页
The lignite-derived carbon from self-protection pyrolysis was employed to balance the fracturing and cold-welding of magnesium during ball milling.Particle size analysis indicates that the introduction of lignite-deri... The lignite-derived carbon from self-protection pyrolysis was employed to balance the fracturing and cold-welding of magnesium during ball milling.Particle size analysis indicates that the introduction of lignite-derived carbon can effectively reduce the particle size of Mg while the introduction of graphite does no help.Besides,the effect of lignite-derived carbon on crystallite size reduction of Mg is also better than graphite.A moderate cold-welding phenomenon was observed after ball-milling Mg with the lignite-derived carbon,suggesting less Mg is wasted on the milling vials and balls.Molecular dynamic simulations reveal that the balanced fracturing and cold-welding of magnesium during ball milling is mainly attributed to the special structure of the lignite-derived carbon:graphitized short-range ordered stacking function as dry lubricant and irregular shape/sharp edge function as milling aid.The preliminary findings in current study are expected to offer implications for designing efficient Mg-based hydrogen storage materials. 展开更多
关键词 MAGNESIUM lignite-derived carbon cold-welding ball milling molecular dynamic
下载PDF
Milling degree affects the fermentation properties of rice:perspectives from the composition of nutrients and gut microbiota via in vitro fermentation
4
作者 Yu Zhang Fan Li +7 位作者 Shutong Pan Bing Bai Kai Huang Sen Li Hongwei Cao Tian Xie Jian Xie Xiao Guan 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1578-1588,共11页
Fermentation substrates of rice with different milling degrees(MDs) were prepared and fermented with human feces to compare their fermentation properties and effects on gut microbiota.MD 0s,MD 5s and MD 60s represente... Fermentation substrates of rice with different milling degrees(MDs) were prepared and fermented with human feces to compare their fermentation properties and effects on gut microbiota.MD 0s,MD 5s and MD 60s represented brown rice,moderately-milled rice and white rice,respectively.After in vitro fermentation,the MD 5s group showed higher starch utilization,compared with the MD 0s and 60s groups evaluated by Fourier transform infrared spectrometer,and confocal laser scanning microscope.Effects of fermentation substrates of rice with different MDs on gut microbiota were evaluated by 16S rDNA sequencing.All the sample groups reduced the pH and produced short-chain fatty acids(SCFAs) and branched-chain fatty acids.The MD 5s group exhibited higher α-diversity than the MD 0s and 60s groups.Abundances of Phascolarctobacterium,Blautia and norank_f_Ruminococcaceae were higher in the MD 0s and 5s groups,compared with the MD 60s group.These bacteria were also positively correlated with the SCFAs production via Spearman correlation analysis.In vitro culture assay revealed that fermentation substrates of MD 0s and 5s promoted the growth of two probiotics(Akkermansia muciniphila and Bifidobacterium adolescentis).Our results showed that moderate milling might be an appropriate way to produce rice products with richer nutrients and better fermentation properties. 展开更多
关键词 Rice processing milling Whole grains Gut microbiota
下载PDF
Improving hydrogen storage thermodynamics and kinetics of Ce-Mg-Ni-based alloy by mechanical milling with TiF_(3)
5
作者 Hongwei Shang Wei Zhang +4 位作者 Xin Wei Yaqin Li Zeming Yuan Jun Li Yanghuan Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1593-1607,共15页
Mg-based hydrides are too stable and the kinetics of hydrogen absorption and desorption is not satisfactory.An efficient way to improve these shortcomings is to employ reactive ball milling to synthesize the nanocompo... Mg-based hydrides are too stable and the kinetics of hydrogen absorption and desorption is not satisfactory.An efficient way to improve these shortcomings is to employ reactive ball milling to synthesize the nanocomposite materials of Mg and additives.In this experiment,TiF_(3)was selected as an additive,and the mechanical milling method was employed to prepare the experimental alloys.The alloys used in this experiment were the as-cast Ce_(5)Mg_(85)Ni_(10),as-milled Ce_(5)Mg_(85)Ni_(10)and Ce_(5)Mg_(85)Ni_(10)+3 wt.%TiF3.The phase transformation,structural evolution,isothermal and non-isothermal hydrogenation and dehydrogenation performances of the alloys were inspected by XRD,SEM,TEM,Sievert apparatus,DSC and TGA.It revealed that nanocrystalline appeared in the as-milled samples.Compared with the as-cast alloy,ball milling made the particle dimension and grain size decrease dramatically and the defect density increase significantly.The addition of TiF_(3)made the surface of ball milling alloy particles markedly coarser and more irregular.Ball milling and adding TiF_(3)distinctly improved the activation and kinetics of the alloys.Moreover,ball milling along with TiF_(3)can decrease the onset dehydrogenation temperature of Mg-based hydrides and slightly ameliorate their thermodynamics. 展开更多
关键词 Mg-based hydrides TiF_(3) Ball milling THERMODYNAMICS KINETICS
下载PDF
Distribution of antioxidants and phenolic compounds in flour milling fractions from hard red winter wheat
6
作者 Lauren Renee Brewer Jittawan Kubola +1 位作者 Sirithon Siriamornpun Yong-Cheng Shi 《Grain & Oil Science and Technology》 CAS 2024年第2期71-78,共8页
Mature wheat kernels contain three main parts:endosperm,bran,and germ.Flour milling results in multiple streams that are chemically different;however,the distribution of antioxidants and phenolic compounds has not bee... Mature wheat kernels contain three main parts:endosperm,bran,and germ.Flour milling results in multiple streams that are chemically different;however,the distribution of antioxidants and phenolic compounds has not been well documented in terms of conventional milling by-product streams.In this study,multiple analytical methods were used to investigate antioxidant activity and phenolic compound compositions of hard red winter wheat(whole ground wheat),the parts of a wheat kernel(bran,flour,germ),and wheat by-product streams(mill feed,red dog,shorts)for the first time.For each mill stream,phenolic compounds(total,flavonoid,and anthocyanin contents)were determined and antioxidant activities were evaluated with 1,1-diphenyl-2-picrylhydrazyl(DPPH)radical-scavenging activity,ferric reducing/antioxidant power(FRAP),and total antioxidant capacity assays.Significant differences(P<0.05)were observed in phenolic concentrations among fractions of bran,flour,and germ milled from the same kernels and noted that germ accounts for the majority of antioxidant properties,whereas bran contains a substantial portion of phenolic compounds and anthocyanins.Mill feed was high in phenolic content(5.29 mg FAE/g),total antioxidant capacity(866 mg/g),and antioxidant activity(up to 75% DPPH inhibition and 20.26μmol FeSO_(4)/g).The comprehensive information on distribution of antioxidants and phenolic compounds provides insights for future human consumption of commonly produced co-products from flour milling,and for selecting and using different milling fractions to make foods with improved nutritional properties. 展开更多
关键词 Wheat milling streams ANTIOXIDANTS Phenolic acids Flavonoid ANTHOCYANIN
下载PDF
Improved length of calcium sulfate crystal seeds and whiskers via ball milling and hydration treatment
7
作者 Yuke Li Yuxin Liu +1 位作者 Jizhen Huang Yi Mei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期102-109,共8页
Elucidating the effect of growth periods on the quality of calcium sulfate whiskers(CSWs)prepared from calcium sulfate dihydrate(DH)is imperative.Herein,crystal seeds and whiskers were prepared from DH in a water–gly... Elucidating the effect of growth periods on the quality of calcium sulfate whiskers(CSWs)prepared from calcium sulfate dihydrate(DH)is imperative.Herein,crystal seeds and whiskers were prepared from DH in a water–glycerol system.Longer whiskers were obtained from crystal seeds prepared via hydration of DH for 30 s than via ball milling for 5 min followed by hydration for 20 s.The attachment of cetyltrimethyl ammonium bromide and glycerol additives to the whisker tops promoted whisker growth.The whisker sponges exhibited good thermal barrier properties and compression cycle stability. 展开更多
关键词 Hemihydrate gypsum whisker HYDRATION Ball milling/hydration Crystal seed Growth process
下载PDF
Theoretical Modeling and Surface Roughness Prediction of Microtextured Surfaces in Ultrasonic Vibration-Assisted Milling
8
作者 Chenbing Ni Junjie Zhu +3 位作者 Youqiang Wang Dejian Liu Xuezhao Wang Lida Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期163-183,共21页
Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface te... Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM. 展开更多
关键词 Theoretical modeling Microtextured surface Ultrasonic vibration-assisted milling Cubic spline interpolation Surface roughness
下载PDF
An electromagnetic semi-active dynamic vibration absorber for thin-walled workpiece vibration suppression in mirror milling
9
作者 Jianghua KONG Bei DING +3 位作者 Wei WANG Zhixia WANG Juliang XIAO Hongyun QIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1315-1334,共20页
As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address thes... As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address these challenges,we propose a novel tunable electromagnetic semi-active dynamic vibration absorber(ESADVA),which integrates with a magnetic suction follower to form a followed ESADVA(follow-ESADVA)for mirror milling.This system combines a tunable magnet oscillator with a follower,enabling real-time vibration absorption and condition feedback throughout the milling process.Additionally,the device supports self-sensing and frequency adjustment by providing feedback to a linear actuator,which alters the distance between magnets.This resolves the traditional issue of being unable to directly monitor vibration at the machining point due to space constraints and tool interference.The frequency shift characteristics and vibration absorption performance are comprehensively investigated.Theoretical and experimental results demonstrate that the prototyped follow-ESADVA achieves frequency synchronization with the milling tool,resulting in a vibration suppression rate of approximately 47.57%.Moreover,the roughness of the machined surface decreases by18.95%,significantly enhancing the surface quality.The results of this work pave the way for higher-quality machined surfaces and a more stable mirror milling process. 展开更多
关键词 semi-active dynamic vibration absorber(SADVA) mirror milling selfsensing vibration absorption tuning thin-walled workpiece
下载PDF
Determination of the feasible setup parameters of a workpiece to maximize the utilization of a five-axis milling machine 被引量:1
10
作者 Aqeel AHMED Muhammad WASIF +2 位作者 Anis FATIMA Liming WANG Syed Amir IQBAL 《Frontiers of Mechanical Engineering》 SCIE CSCD 2021年第2期298-314,共17页
The machining industry must maximize the machine tool utilization for its efficient and effective usage. Determining a feasible workpiece location is one of the significant tasks performed in an iterative way via mach... The machining industry must maximize the machine tool utilization for its efficient and effective usage. Determining a feasible workpiece location is one of the significant tasks performed in an iterative way via machining simulations. The maximum utilization of five-axis machine tools depends upon the cutting system’s geometry, the configuration of the machine tool, and the workpiece’s location. In this research, a mathematical model has been developed to determine the workpiece’s feasible location in the five-axis machine tool for avoiding the number of iterations, which are usually performed to eliminate the global collision and axis limit errors. In this research, a generic arrangement of the five-axis machine tool has been selected. The mathematical model of post-processor has been developed by using kinematic modeling methods. The machine tool envelopes have been determined using the post-processor and axial limit. The tooltip reachable workspace is determined by incorporating the post-processor, optimal cutting system length, and machining envelope, thereby further developing an algorithm to determine the feasible workpiece setup parameters accurately. The algorithm’s application has been demonstrated using an example. Finally, the algorithm is validated for feasible workpiece setup parameters in a virtual environment. This research is highly applicable in the industry to eliminate the number of iterations performed for the suitable workpiece setup parameters. 展开更多
关键词 workpiece setup parameter five-axis space utilization setup parameters machine tool
原文传递
A simplified method for local tool interference detection and tool position modification during five-axis ball-end milling process
11
作者 ZHANG Song 张松 LI Bin-xun 《Journal of Chongqing University》 CAS 2018年第4期155-161,共7页
Five-axis ball-end milling is commonly used to machine the complex surfaces. Local tool interference phenomenon which often occurs in five-axis milling should be urgently solved. In this paper, a simplified method to ... Five-axis ball-end milling is commonly used to machine the complex surfaces. Local tool interference phenomenon which often occurs in five-axis milling should be urgently solved. In this paper, a simplified method to detect the occurrence of local tool interference and modify tool position is proposed. First, the detection matrix is established to detect local tool interference at all the cutter location points on tool path simultaneously in five-axis ball-end milling of complex surfaces. The algorithm of detection matrix based on point arithmetic is simple. Secondly, the new coordinates of the modified interfering-free points are obtained precisely by using the genetic algorithm. The feasibility of the method is validated by simulation in Matlab. This research is benefit to simplify the calculation of local tool interference detection and tool position modification. 展开更多
关键词 LOCAL TOOL interference DETECTION TOOL position modification ball-end milling CUTTER
下载PDF
Experimental Study on Titanium Alloy Cutting Property and Wear Mechanism with Circular-arc Milling Cutters 被引量:2
12
作者 Tao Chen Jiaqiang Liu +3 位作者 Gang Liu Hui Xiao Chunhui Li Xianli Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期219-229,共11页
Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing ineffici... Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing inefficiency,serious wear,poor workpiece face quality,etc.Aiming at the above problems,this paper carried out a comparative experimental study on titanium alloy milling based on the CAMCand BEMC.The variation law of cutting force and wear morphology of the two tools were obtained,and the wear mechanism and the effect of wear on machining quality were analyzed.The conclusion is that in contrast with BEMC,under the action of cutting thickness thinning mechanism,the force of CAMC was less,and its fluctuation was more stable.The flank wear was uniform and near the cutting edge,and the wear rate was slower.In the early period,the wear mechanism of CAMC was mainly adhesion.Gradually,oxidative wear also occurred with milling.Furthermore,the surface residual height of CAMC was lower.There is no obvious peak and trough accompanied by fewer surface defects. 展开更多
关键词 Circular-arc milling cutter Titanium alloy Ball-end milling cutter Surface quality milling force Tool wear Machining quality
下载PDF
Tribological Performance of Different Concentrations of Al_(2)O_(3)Nanofluids on Minimum Quantity Lubrication Milling 被引量:5
13
作者 Xiufang Bai Juan Jiang +3 位作者 Changhe Li Lan Dong Hafiz Muhammad Ali Shubham Sharma 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期67-78,共12页
Nanofluid minimum quantity lubrication(NMQL)is a green processing technology.Cottonseed oil is suitable as base oil because of excellent lubrication performance,low freezing temperature,and high yield.Al_(2)O_(3)nanop... Nanofluid minimum quantity lubrication(NMQL)is a green processing technology.Cottonseed oil is suitable as base oil because of excellent lubrication performance,low freezing temperature,and high yield.Al_(2)O_(3)nanoparticles improve not only the heat transfer capacity but also the lubrication performance.The physical and chemical proper-ties of nanofluid change when Al_(2)O_(3)nanoparticles are added.However,the effects of the concentration of nanofluid on lubrication performance remain unknown.Furthermore,the mechanisms of interaction between Al_(2)O_(3)nanoparti-cles and cottonseed oil are unclear.In this research,nanofluid is prepared by adding different mass concentrations of Al_(2)O_(3)nanoparticles(0,0.2%,0.5%,1%,1.5%,and 2%wt)to cottonseed oil during minimum quantity lubrication(MQL)milling 45 steel.The tribological properties of nanofluid with different concentrations at the tool/workpiece interface are studied through macro-evaluation parameters(milling force,specific energy)and micro-evaluation parameters(surface roughness,micro morphology,contact angle).The result show that the specific energy is at the minimum(114 J/mm^(3)),and the roughness value is the lowest(1.63μm)when the concentration is 0.5 wt%.The surfaces of the chip and workpiece are the smoothest,and the contact angle is the lowest,indicating that the tribological proper-ties are the best under 0.5 wt%.This research investigates the intercoupling mechanisms of Al_(2)O_(3)nanoparticles and cottonseed base oil,and acquires the optimal Al_(2)O_(3)nanofluid concentration to receive satisfactory tribological properties. 展开更多
关键词 milling Al_(2)O_(3)nanofluid Minimum quantity lubrication(MQL) Surface micromorphology
下载PDF
Health Monitoring of Milling Tool Inserts Using CNN Architectures Trained by Vibration Spectrograms 被引量:1
14
作者 Sonali S.Patil Sujit S.Pardeshi Abhishek D.Patange 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期177-199,共23页
In-process damage to a cutting tool degrades the surface􀀀nish of the job shaped by machining and causes a signi􀀀cant􀀀nancial loss.This stimulates the need for Tool Condition Monitoring(TCM)t... In-process damage to a cutting tool degrades the surface􀀀nish of the job shaped by machining and causes a signi􀀀cant􀀀nancial loss.This stimulates the need for Tool Condition Monitoring(TCM)to assist detection of failure before it extends to the worse phase.Machine Learning(ML)based TCM has been extensively explored in the last decade.However,most of the research is now directed toward Deep Learning(DL).The“Deep”formulation,hierarchical compositionality,distributed representation and end-to-end learning of Neural Nets need to be explored to create a generalized TCM framework to perform eciently in a high-noise environment of cross-domain machining.With this motivation,the design of dierent CNN(Convolutional Neural Network)architectures such as AlexNet,ResNet-50,LeNet-5,and VGG-16 is presented in this paper.Real-time spindle vibrations corresponding to healthy and various faulty con􀀀gurations of milling cutter were acquired.This data was transformed into the time-frequency domain and further processed by proposed architectures in graphical form,i.e.,spectrogram.The model is trained,tested,and validated considering dierent datasets and showcased promising results. 展开更多
关键词 milling tool inserts health monitoring vibration spectrograms deep learning convolutional neural network
下载PDF
Effect of ball milling time on the microstructure and compressive properties of the Fe–Mn–Al porous steel 被引量:1
15
作者 Lingzhi Xie Zhigang Xu +4 位作者 Yunzhe Qi Jinrong Liang Peng He Qiang Shen Chuanbin Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期917-929,共13页
In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicat... In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicated that the powder size significantly decreased,and the morphology of the Fe powder tended to be increasingly flat as the milling time increased.However,the prolonged milling duration had limited impact on the phase transition of the powder mixture.The main phases of all the samples sintered at 640℃ were α-Fe,α-Mn and Al,and a small amount of Fe2Al5 and Al8Mn5.When the sintering temperature increased to 1200℃,the phase composition was mainly comprised of γ-Fe and α-Fe.The weight loss fraction of the sintered sample decreased with milling time,i.e.,8.3wt% after 20 h milling compared to15.3wt% for 10 h.The Mn depletion region(MDR) for the 10,15,and 20 h milled samples was about 780,600,and 370 μm,respectively.The total porosity of samples sintered at 640℃ decreased from ~46.6vol% for the 10 h milled powder to ~44.2vol% for 20 h milled powder.After sintering at 1200℃,the total porosity of sintered samples prepared by 10 and 20 h milled powder was ~58.3vol% and ~51.3vol%,respectively.The compressive strength and ductility of the 1200℃ sintered porous steel increased as the milling time increased. 展开更多
关键词 powder metallurgy porous steel ball milling time microstructure evolution compressive properties
下载PDF
A New Dynamics Analysis Model for Five-Axis Machining of Curved Surface Based on Dimension Reduction and Mapping
16
作者 Minglong Guo Zhaocheng Wei +2 位作者 Minjie Wang Zhiwei Zhao Shengxian Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期172-184,共13页
The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics an... The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics analysis has always been a research hotspot.The cutting conditions determined by the cutter axis,tool path,and workpiece geometry are complex and changeable,which has made dynamics research a major challenge.For this reason,this paper introduces the innovative idea of applying dimension reduction and mapping to the five-axis machining of curved surfaces,and proposes an efficient dynamics analysis model.To simplify the research object,the cutter position points along the tool path were discretized into inclined plane five-axis machining.The cutter dip angle and feed deflection angle were used to define the spatial position relationship in five-axis machining.These were then taken as the new base variables to construct an abstract two-dimensional space and establish the mapping relationship between the cutter position point and space point sets to further simplify the dimensions of the research object.Based on the in-cut cutting edge solved by the space limitation method,the dynamics of the inclined plane five-axis machining unit were studied,and the results were uniformly stored in the abstract space to produce a database.Finally,the prediction of the milling force and vibration state along the tool path became a data extraction process that significantly improved efficiency.Two experiments were also conducted which proved the accuracy and efficiency of the proposed dynamics analysis model.This study has great potential for the online synchronization of intelligent machining of large surfaces. 展开更多
关键词 Curved surface five-axis machining Dimension reduction and mapping milling force DYNAMICS
下载PDF
Multi-Objective Redundancy Optimization of Continuous-Point Robot Milling Path in Shipbuilding
17
作者 Jianjun Yao Chen Qian +1 位作者 Yikun Zhang Geyang Yu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1283-1303,共21页
The 6-DOF manipulator provides a new option for traditional shipbuilding for its advantages of vast working space,low power consumption,and excellent flexibility.However,the rotation of the end effector along the tool... The 6-DOF manipulator provides a new option for traditional shipbuilding for its advantages of vast working space,low power consumption,and excellent flexibility.However,the rotation of the end effector along the tool axis is functionally redundant when using a robotic arm for five-axis machining.In the process of ship construction,the performance of the parts’protective coating needs to bemachined tomeet the Performance Standard of Protective Coatings(PSPC).The arbitrary redundancy configuration in path planning will result in drastic fluctuations in the robot joint angle,greatly reducing machining quality and efficiency.There have been some studies on singleobjective optimization of redundant variables,However,the quality and efficiency of milling are not affected by a single factor,it is usually influenced by several factors,such as the manipulator stiffness,the joint motion smoothness,and the energy consumption.To solve this problem,this paper proposed a new path optimization method for the industrial robot when it is used for five-axis machining.The path smoothness performance index and the energy consumption index are established based on the joint acceleration and the joint velocity,respectively.The path planning issue is formulated as a constrained multi-objective optimization problem by taking into account the constraints of joint limits and singularity avoidance.Then,the path is split into multiple segments for optimization to avoid the slow convergence rate caused by the high dimension.An algorithm combining the non-dominated sorting genetic algorithm(NSGA-II)and the differential evolution(DE)algorithm is employed to solve the above optimization problem.The simulations validate the effectiveness of the algorithm,showing the improvement of smoothness and the reduction of energy consumption. 展开更多
关键词 SHIPBUILDING robot milling functional redundancy path optimization MULTI-OBJECTIVE
下载PDF
Expert Experience and Data-Driven Based Hybrid Fault Diagnosis for High-SpeedWire Rod Finishing Mills 被引量:1
18
作者 Cunsong Wang Ningze Tang +3 位作者 Quanling Zhang Lixin Gao Haichen Yin Hao Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1827-1847,共21页
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo... The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system. 展开更多
关键词 High-speed wire rod finishing mills expert experience DATA-DRIVEN fault diagnosis
下载PDF
Evolution and Development Trend Prospect of Metal Milling Equipment
19
作者 Jie Wen Fugui Xie +1 位作者 Xinjun Liu Yi Yue 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期1-15,共15页
The world is currently undergoing profound changes which have never happened within the past century.Global competition in the technology and industry fields is becoming increasingly fierce.The strategic competition o... The world is currently undergoing profound changes which have never happened within the past century.Global competition in the technology and industry fields is becoming increasingly fierce.The strategic competition of the major powers further focuses on the manufacturing industry.Developed countries such as the United States,Germany,and Japan have successively put forward strategic plans such as“re-industrialization”and“return of manufacturing industry”,aiming to seize the commanding heights of a new round of global high-end technology competition and expand international market share.Standing at the historic intersection of a new round of scientific and technological revolution and China's accelerated high-quality development,the“14th Five-Year Plan”clearly pointed out that intelligent manufacturing is the main development trend to promote China's manufacturing to the medium-high end of the global value chain.This reflects the importance of advanced manufacturing for national strategic layout.To better grasp the development direction of advanced manufacturing equipment,the development process and current application status of manufacturing equipment are summarized,and thereafter the characteristics of manufacturing equipment in different development stages of the manufacturing industry are analyzed.Finally,the development trend of advanced milling equipment is prospected. 展开更多
关键词 Intelligent manufacturing High-quality development milling equipment Evolution and development trend
下载PDF
Surface Integrity of Inconel 738LC Parts Manufactured by Selective Laser Melting Followed by High-speed Milling
20
作者 Guanhui Ren Sai Guo Bi Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期65-79,共15页
This study is concerned with the surface integrity of Inconel 738LC parts manufactured by selective laser melting(SLM)followed by high-speed milling(HSM).In the investigation process of surface integrity,the study emp... This study is concerned with the surface integrity of Inconel 738LC parts manufactured by selective laser melting(SLM)followed by high-speed milling(HSM).In the investigation process of surface integrity,the study employs ultradepth three-dimensional microscopy,laser scanning confocal microscopy,scanning electron microscopy,electron backscatter diffractometry,and energy dispersive spectroscopy to characterize the evolution of material microstructure,work hardening,residual stress coupling,and anisotropic effect of the building direction on surface integrity of the samples.The results show that SLM/HSM hybrid manufacturing can be an effective method to obtain better surface quality with a thinner machining metamorphic layer.High-speed machining is adopted to reduce cutting force and suppress machining heat,which is an effective way to produce better surface mechanical properties during the SLM/HSM hybrid manufacturing process.In general,high-speed milling of the SLM-built Inconel 738LC samples offers better surface integrity,compared to simplex additive manufacturing or casting. 展开更多
关键词 Surface integrity Inconel 738LC Selective laser melting High-speed milling
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部