In this paper,we consider the fixed point theorem for Proinov mappings with a contractive iterate at a point.In other words,we combine and unify the basic approaches of Proinov and Sehgal in the framework of the compl...In this paper,we consider the fixed point theorem for Proinov mappings with a contractive iterate at a point.In other words,we combine and unify the basic approaches of Proinov and Sehgal in the framework of the complete metric spaces.We consider examples to illustrate the validity of the obtained result.展开更多
This article offers a simple but rigorous proof of Brouwer’s fixed point theorem using Sperner’s Lemma.The general method I have used so far in the proof is mainly to convert the n-dimensional shapes to the correspo...This article offers a simple but rigorous proof of Brouwer’s fixed point theorem using Sperner’s Lemma.The general method I have used so far in the proof is mainly to convert the n-dimensional shapes to the corresponding case under the Sperner’s Labeling and apply the Sperner’s Lemma to solve the question.展开更多
Let X be a metric space with an ordering structure,A: X→X is a operator and x≤Ax for any x∈X. In this paper we prove a new fixed point theorem, which generalizes famous caristi fixed point theorem.
The concept of w distance on a metric space is introduced and three common fixed points theorems for commuting maps on a complete metric space are proved. These results extended fixed point theorems of Jungck a...The concept of w distance on a metric space is introduced and three common fixed points theorems for commuting maps on a complete metric space are proved. These results extended fixed point theorems of Jungck and Ciric.展开更多
By using the degree theory on cone an existence theorem of positive solution for a class of fourth-order two-point BVP's is obtained. This class of BVP's usually describes the deformation of the elastic beam w...By using the degree theory on cone an existence theorem of positive solution for a class of fourth-order two-point BVP's is obtained. This class of BVP's usually describes the deformation of the elastic beam with both fixed end-points.展开更多
The aim of this article is to prove a fixed point theorem in 2-Banach spaces and show its applications to the Ulam stability of functional equations. The obtained stability re- sults concern both some single variable ...The aim of this article is to prove a fixed point theorem in 2-Banach spaces and show its applications to the Ulam stability of functional equations. The obtained stability re- sults concern both some single variable equations and the most important functional equation in several variables, namely, the Cauchy equation. Moreover, a few corollaries corresponding to some known hyperstability outcomes are presented.展开更多
In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive ...In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.展开更多
In this article, we introduce the notion of Meir-Keleer condensing operator in a Banach space, a characterization using L-functions and provide a few generalization of Darbo fixed point theorem. Also, we introduce the...In this article, we introduce the notion of Meir-Keleer condensing operator in a Banach space, a characterization using L-functions and provide a few generalization of Darbo fixed point theorem. Also, we introduce the concept of a bivariate Meir-Keleer condensing operator and prove some coupled fixed point theorems. As an application, we prove the existence of solutions for a large class of functional integral equations of Volterra type in two variables.展开更多
In complete metric spaces, the common fixed point theorems for sequences of φ-type contraction set-valued mappings are established, and the corresponding random com- mon fixed point theorems for set-valued mappings a...In complete metric spaces, the common fixed point theorems for sequences of φ-type contraction set-valued mappings are established, and the corresponding random com- mon fixed point theorems for set-valued mappings are also obtained.展开更多
Results regarding best approximation and best Simultaneous approximation on convex metric spaces are Obtained.Existence of fixed points for an ultimately nonexpansive semigroup of mappings is also shown.
Let X be a weakly Cauchy normed space in which the parallelogram law holds,C be a bounded closed convex subset of X with one contracting point and T be an{a,b,c}-generalized-nonexpansive mapping from C into C.We prove...Let X be a weakly Cauchy normed space in which the parallelogram law holds,C be a bounded closed convex subset of X with one contracting point and T be an{a,b,c}-generalized-nonexpansive mapping from C into C.We prove that the infimum of the set{‖x-T(x)‖}on C is zero,study some facts concerning the{a,b,c}-generalized-nonexpansive mapping and prove that the asymptotic center of any bounded sequence with respect to C is singleton.Depending on the fact that the{a,b,0}-generalized-nonexpansive mapping from C into C has fixed points,accord-ingly,another version of the Browder's strong convergence theorem for mappings is given.展开更多
Recently many authors have generalized the famous Ky Fan's minimax inequality. In this paper, we put forward T-diagonal convexity (concavity) conditions and develop the main results in this respect. Next, we discu...Recently many authors have generalized the famous Ky Fan's minimax inequality. In this paper, we put forward T-diagonal convexity (concavity) conditions and develop the main results in this respect. Next, we discuss some fixed point problems, and generalize the Fan-Glicksberg's fixed point theorem[14].展开更多
First, the implicit relations were given. A common fixed point theorem was proved for two mappings satisfying implicit relation functions. A further fixed point theorem was proved for mappings satisfying implicit rela...First, the implicit relations were given. A common fixed point theorem was proved for two mappings satisfying implicit relation functions. A further fixed point theorem was proved for mappings satisfying implicit relation functions on two compact metric spaces.展开更多
In this paper, based on a basic result on condensing mappings satisfying the interior condition, some new fixed point theorems of the condensing mappings of this kind are obtained. As a result, the famous Altman's th...In this paper, based on a basic result on condensing mappings satisfying the interior condition, some new fixed point theorems of the condensing mappings of this kind are obtained. As a result, the famous Altman's theorem, Roth's theorem and Petryshyn's theorem are extended to condensing mappings satisfying the interior condition.展开更多
Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-value...Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-valued mapping in complete, convex matric spaces. We extend and develop the main results.展开更多
In this article, a novel fixed point theorem in C[0, 1] space is established by using the properties of fixed point index. This theorem is then applied to prove the existence of positive solutions for three-point boun...In this article, a novel fixed point theorem in C[0, 1] space is established by using the properties of fixed point index. This theorem is then applied to prove the existence of positive solutions for three-point boundary value problems and generalizes some previous results.展开更多
In this paper, a new Browder fixed point theorem is established in the noncompact sub-admissible subsets of noncompact hyperconvex metric spaces. As application, a Ky Fan section theorem and an intersection theorem ar...In this paper, a new Browder fixed point theorem is established in the noncompact sub-admissible subsets of noncompact hyperconvex metric spaces. As application, a Ky Fan section theorem and an intersection theorem are obtained.展开更多
In this paper,we get fixed point theorems of mixed monotone operators in much weaker condition and give some applications for nonmonotone operators and differential equations.
In this paper, we present a new fixed point theorem in L-convex spaces and apply it to obtain a maximal element theorem, a variational inequality and a saddle point theorem in L-convex spaces.
This paper proposes a formally stronger set-valued Clarke's fixed point theorem. By this theorem we can improve a fixed point theorem for weakly inward contraction set-valued mapping of D. Dowing and W.A. Kirk.
文摘In this paper,we consider the fixed point theorem for Proinov mappings with a contractive iterate at a point.In other words,we combine and unify the basic approaches of Proinov and Sehgal in the framework of the complete metric spaces.We consider examples to illustrate the validity of the obtained result.
基金by Dr Kemp from National Mathematics and Science College.
文摘This article offers a simple but rigorous proof of Brouwer’s fixed point theorem using Sperner’s Lemma.The general method I have used so far in the proof is mainly to convert the n-dimensional shapes to the corresponding case under the Sperner’s Labeling and apply the Sperner’s Lemma to solve the question.
文摘Let X be a metric space with an ordering structure,A: X→X is a operator and x≤Ax for any x∈X. In this paper we prove a new fixed point theorem, which generalizes famous caristi fixed point theorem.
文摘The concept of w distance on a metric space is introduced and three common fixed points theorems for commuting maps on a complete metric space are proved. These results extended fixed point theorems of Jungck and Ciric.
文摘By using the degree theory on cone an existence theorem of positive solution for a class of fourth-order two-point BVP's is obtained. This class of BVP's usually describes the deformation of the elastic beam with both fixed end-points.
文摘The aim of this article is to prove a fixed point theorem in 2-Banach spaces and show its applications to the Ulam stability of functional equations. The obtained stability re- sults concern both some single variable equations and the most important functional equation in several variables, namely, the Cauchy equation. Moreover, a few corollaries corresponding to some known hyperstability outcomes are presented.
基金supported by Università degli Studi di Palermo (Local University Project ex 60%)
文摘In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.
文摘In this article, we introduce the notion of Meir-Keleer condensing operator in a Banach space, a characterization using L-functions and provide a few generalization of Darbo fixed point theorem. Also, we introduce the concept of a bivariate Meir-Keleer condensing operator and prove some coupled fixed point theorems. As an application, we prove the existence of solutions for a large class of functional integral equations of Volterra type in two variables.
基金Foundation item: Supported by the Science Foundation from the Ministry of Education of Jiangsu Province(04KJD110168, 06KJBll0107)
文摘In complete metric spaces, the common fixed point theorems for sequences of φ-type contraction set-valued mappings are established, and the corresponding random com- mon fixed point theorems for set-valued mappings are also obtained.
文摘Results regarding best approximation and best Simultaneous approximation on convex metric spaces are Obtained.Existence of fixed points for an ultimately nonexpansive semigroup of mappings is also shown.
文摘Let X be a weakly Cauchy normed space in which the parallelogram law holds,C be a bounded closed convex subset of X with one contracting point and T be an{a,b,c}-generalized-nonexpansive mapping from C into C.We prove that the infimum of the set{‖x-T(x)‖}on C is zero,study some facts concerning the{a,b,c}-generalized-nonexpansive mapping and prove that the asymptotic center of any bounded sequence with respect to C is singleton.Depending on the fact that the{a,b,0}-generalized-nonexpansive mapping from C into C has fixed points,accord-ingly,another version of the Browder's strong convergence theorem for mappings is given.
基金The project supported by the Science Fund of Jiangsu
文摘Recently many authors have generalized the famous Ky Fan's minimax inequality. In this paper, we put forward T-diagonal convexity (concavity) conditions and develop the main results in this respect. Next, we discuss some fixed point problems, and generalize the Fan-Glicksberg's fixed point theorem[14].
文摘First, the implicit relations were given. A common fixed point theorem was proved for two mappings satisfying implicit relation functions. A further fixed point theorem was proved for mappings satisfying implicit relation functions on two compact metric spaces.
基金Supported in part by the Foundation of Education Ministry, Anhui Province, China (No: KJ2008A028)Educa-tion Ministry, Hubei Province, China (No: D20072202)
文摘In this paper, based on a basic result on condensing mappings satisfying the interior condition, some new fixed point theorems of the condensing mappings of this kind are obtained. As a result, the famous Altman's theorem, Roth's theorem and Petryshyn's theorem are extended to condensing mappings satisfying the interior condition.
文摘Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-valued mapping in complete, convex matric spaces. We extend and develop the main results.
基金This study was supported by National Natural Science Foundation of China (10371068)Science Foundation of Shanxi Province (20041003)
文摘In this article, a novel fixed point theorem in C[0, 1] space is established by using the properties of fixed point index. This theorem is then applied to prove the existence of positive solutions for three-point boundary value problems and generalizes some previous results.
基金Supported by the Scientific Research Foundation of Bijie University(20072001)
文摘In this paper, a new Browder fixed point theorem is established in the noncompact sub-admissible subsets of noncompact hyperconvex metric spaces. As application, a Ky Fan section theorem and an intersection theorem are obtained.
文摘In this paper,we get fixed point theorems of mixed monotone operators in much weaker condition and give some applications for nonmonotone operators and differential equations.
基金Foundation item: Supported by the Natural Science Foundation of Guizhou Province(J2011]2093)
文摘In this paper, we present a new fixed point theorem in L-convex spaces and apply it to obtain a maximal element theorem, a variational inequality and a saddle point theorem in L-convex spaces.
文摘This paper proposes a formally stronger set-valued Clarke's fixed point theorem. By this theorem we can improve a fixed point theorem for weakly inward contraction set-valued mapping of D. Dowing and W.A. Kirk.