期刊文献+
共找到199篇文章
< 1 2 10 >
每页显示 20 50 100
Superior and safer lithium sulfur batteries realized by robust polysulfides-retarding dam with high flame retardance
1
作者 Junling Wang Yanfang Cao +5 位作者 Zhirong Wang Yinquan Zhao Chuang He Fudong Zhao Chaoling Han Shui Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期471-486,I0011,共17页
The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite grow... The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite growth and thermal hazard as the major problems triggering the cycling instability and low safety.With the merit of convenience,the method of designing functional separator has been adapted.Concretely,the carbon aerogel confined with CoS_(2)(CoS_(2)-NCA)is constructed and coated on Celgard separator surface,acquiring CoS_(2)-NCA modified separator(CoS_(2)-NCA@C),which holds the promoted electrolyte affinity and flame retardance.As revealed,CoS_(2)-NCA@C cell gives a high discharge capacity 1536.9 mAh/g at 1st cycle,much higher than that of Celgard cell(987.1 mAh/g).Moreover,the thermal runaway triggering time is dramatically prolonged by 777.4 min,corroborating the promoted thermal safety of cell.Noticeably,the higher coulombic efficiency stability and lower overpotential jointly confirm the efficacy of CoS_(2)-NCA@C in suppressing the lithium dendrite growth.Overall,this work can provide useful inspirations for designing functional separator,coping with the vexing issues of LSBs. 展开更多
关键词 Lithium-sulfur batteries Thermal safety flame retardancy SEPARATOR
下载PDF
Synthesis, Crystal Structure and Flame Retardance of 2-(3-Silatranylpropylamino)-4-phenyl-5,5-dimethyl-1,3,2-dioxaphosphorinane-2-oxide
2
作者 马小平 黄钰天 +3 位作者 郑寅 王东华 王军刚 宋新建 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第7期1117-1123,共7页
The title compound, 2-(3-silatranylpropylamino)-4-dichlorophenyl-5,5-dimethyl- 1,3,2-dioxaphosphorinane-2-oxide (2(C20H33N2O6Psi)?C2H6O?CH4O, Mr = 991.20), has been synthe- sized by the nucleophilic substituti... The title compound, 2-(3-silatranylpropylamino)-4-dichlorophenyl-5,5-dimethyl- 1,3,2-dioxaphosphorinane-2-oxide (2(C20H33N2O6Psi)?C2H6O?CH4O, Mr = 991.20), has been synthe- sized by the nucleophilic substitution reaction of 2-chloro-4-phenyl-5,5-dimethyl-1,3,2-dioxa- phosphorinane-2-oxide with γ-aminopropylsilatrane, and its crystal structure was determined by single-crystal X-ray diffraction. The crystal belongs to the triclinic system, space group P with a = 10.3783(15), b = 11.2402(17), c = 12.1675(18) ?, ? = 70.653(4), ? = 82.908(4), ? = 85.690(4)?, V = 1328.1(3) ?3, Z = 1, Dc = 1.239 g/cm3, μ = 0.19 mm?1, F(000) = 532, the final R = 0.0640 and wR = 0.2090 for 3615 observed reflections with I 〉 2?(I). The cyclic dioxaphosphorinane ring in the molecule adopts a thermodynamically stable cis conformation, while the silatrane fragment forms a cage-like structure in which there exists an intramolecular Si?N donor-acceptor bond. In the crystal structure, centrosymmetrically related molecules are linked by pairs of N–H???O hydrogen bonds into dimers, generating rings with graph-set motif R22(8). Furthermore, a couple of O(7)–H(10)???O(3) hydrogen bonds were formed by O atom of P=O and H atom from hydroxyl in the solvent ethanol. Thermal property of the compound was also studied by means of thermogravimetry (TGA). The thermal analysis and preliminary fireproofing test show that the title compound has good flame retardance. 展开更多
关键词 1 3 2-dioxaphosphorinane-2-oxide crystal structure epoxy resin flame retardance
下载PDF
Preparation of Polyurea Elastomer with Flame Retardant, Insulation and Thermal Conductivity Properties
3
作者 方今 DONG Yang +3 位作者 LU Shangkai LIU Junbang AI Lianghui 刘平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期781-789,共9页
By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant p... By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA. 展开更多
关键词 POLYUREA organic flame retardant inorganic flame retardant synergistic flame retardancy INSULATION thermal conductivity
下载PDF
Synthesis of Organic-Inorganic Hybrid Aluminum Hypophosphite Microspheres Flame Retardant and Its Flame Retardant Research on Thermoplastic Polyurethane
4
作者 刘生鹏 XU Zhi +5 位作者 ZHANG Xinyuan WEI Huan XIONG Yun DING Yigang HUANG Wenbo 许莉莉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期221-233,共13页
Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of... Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites. 展开更多
关键词 POLYPHOSPHAZENE thermoplastic polyurethane flame retardancy aluminum hypophosphite surface polymerization
下载PDF
Research Progress in Flame Retardant in Flame Retardant Coatings
5
作者 Kailun Xing Siqi Yin 《Expert Review of Chinese Chemical》 2024年第2期27-31,共5页
Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame reta... Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame retardant agent.A detailed introduction was given to the development of flame retardant coatings in recent years and the flame retardants used in flame retardant coatings.Flame retardants mainly include halogen flame retar-dants,phosphorus nitrogen flame retardants,expansion flame retardants,biomass flame retardants,and graphene flame retardants.The application of flame retardant coatings in the fields of epoxy resin,polyurethane,etc.was elaborated.In addition,the application of new biomass flame retardants and graphene flame retardants was introduced,and the future development of flame retardant coatings and flame retardants was described. 展开更多
关键词 flame retardant COATINGS APPLICATION
下载PDF
Thermal Degradation, Flame Retardance and Mechanical Properties of Thermoplastic Polyurethane Composites Based on Aluminum Hypophosphite 被引量:10
6
作者 Shou-song Xiao Ming-jun Chen +3 位作者 Liang-ping Dong 邓聪 Li Chen 王玉忠 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2014年第1期98-107,共10页
Aluminum hypophosphite (AP) was used to prepare flame-retarded thermoplastic polyurethane (FR-TPU) composites, and their flame retardancy, thermal degradation and mechanical properties were investigated by limitin... Aluminum hypophosphite (AP) was used to prepare flame-retarded thermoplastic polyurethane (FR-TPU) composites, and their flame retardancy, thermal degradation and mechanical properties were investigated by limiting oxygen index (LOI), vertical burning test (UL-94), thermogravimetric analysis (TGA), cone calorimeter (CC) test, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and tensile test. TPU containing 30 wt% of AP could reach a V-0 rating in the UL-94 test, and its LOI value was 30.2. TGA tests revealed that AP enhanced the formation of residual chars at high temperatures, and slightly affected the thermal stability of TPU at high temperatures. The combustion tests indicated that AP affected the burning behavior of TPU. The peak of heat release rate (PHRR), total heat release (THR) and mass loss rate (MLR) greatly reduced due to the incorporation of AP. The tensile test results showed that both the tensile strength and the elongation at break slightly decreased with the addition of AP. The digital photos and SEM micrographs vitrified that AP facilitated the formation of more compact intumescent char layer. Based on these results mentioned above, the flame-retarding mechanism of AP was discussed. Both the self-charring during the decomposing process of AP and its facilitation to the charring of TPU led to the great improvement in the flame retardancy of TPU. 展开更多
关键词 Thermoplastic polyurethane Aluminium hypophosphite flame retardance Thermal degradation Mechanical property.
原文传递
Thermal Runaway of Lithium-Ion Batteries Employing Flame-Retardant Fluorinated Electrolytes 被引量:1
7
作者 Junxian Hou Li Wang +10 位作者 Xuning Feng Junpei Terada Languang Lu Shigeaki Yamazaki Anyu Su Yoshiko Kuwajima Yongjiang Chen Tomoya Hidaka Xiangming He Hewu Wang Minggao Ouyang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期333-339,共7页
Fluorinated electrolytes possess good antioxidant capacity that provides high compatibility to high-voltage cathode and flame retardance;thus,they are considered as a promising solution for advanced lithium-ion batter... Fluorinated electrolytes possess good antioxidant capacity that provides high compatibility to high-voltage cathode and flame retardance;thus,they are considered as a promising solution for advanced lithium-ion batteries carrying both high-energy density and high safety.Moreover,the fluorinated electrolytes are widely used to form stable electrolyte interphase,due to their chemical reactivity with lithiated graphite or lithium.However,the influence of this reactivity on the thermal safety of batteries is seldom discussed.Herein,we demonstrate that the flame-retardant fluorinated electrolytes help to reduce the flammability,while the lithium-ion batteries with flame-retardant fluorinated electrolytes still undergo thermal runaway and disclose their different thermal runaway pathway from that of battery with conventional electrolyte.The reduction in fluorinated components(e.g.,LiPF 6 and fluoroethylene carbonate(FEC))by fully lithiated graphite accounts for a significant heat release during battery thermal runaway.The 13%of total heat is sufficient to trigger the chain reactions during battery thermal runaway.This study deepens the understanding of the thermal runaway mechanism of lithium-ion batteries employing flame-retardant fluorinated electrolytes,providing guidance on the concept of electrolyte design for safer lithium-ion batteries. 展开更多
关键词 battery safety flame retardance fluorinated electrolytes lithium-ion battery thermal runaway
下载PDF
Preparation of Polylactide Composite with Excellent Flame Retardance and Improved Mechanical Properties 被引量:4
8
作者 Chu-Bo Sun Hong-Da Mao +1 位作者 Feng Chen Qiang Fu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第12期1385-1393,共9页
Despite the good biodegradable and mechanical properties, poly(lactic acid) still suffers from a highly inherent flammability, which restricts its applications in the electric and automobile fields. In order to impr... Despite the good biodegradable and mechanical properties, poly(lactic acid) still suffers from a highly inherent flammability, which restricts its applications in the electric and automobile fields. In order to improve the flame retardancy of PLA, in this work, melamine polyphosphate (MPP) and zinc bisdiethylphosphinate (ZnPi) were firstly incorporated into PLA, and the synergistic effect of them on flame retardance of PLA was investigated using limiting oxygen index (LOI), UL-94 vertical measurement, scanning electron microscopy (SEM) and cone calorimeter tests etc. The results showed that PLA composite with 15 wt% of MPP/ZnPi (3:2) had the best flame-retardant efficiency with LOI value of 30.1 and V0 rating in UL-94 tests, which was far better than using MPP or ZnPi alone. What is more, although a wide range of flame retardants have been developed to reduce the flammability, so far, they normally compromise the mechanical properties of PLA. On the premise of maintaining good fiame-retardant performance, we improved the toughness of flame- retardant PLA composite, and the impact strength of flame-retardant PLA composite was more than tripled (8.08 kJ/m2) by adding thermoplastic urethanes (TPU). This work offers an innovative method for the design of the unique integration of extraordinary flame retardancy and toughening reinforcement for PLA materials. 展开更多
关键词 Synergistic effect flame retardant Poly(lactic acid) Impact strength
原文传递
Influence of Layered Aluminoborophosphate on Flame Retardance, Crystallization Behaviors and Mechanical Properties of Polyamide 66 Systems 被引量:2
9
作者 LI Xiaoshuang LIU Yuan +4 位作者 GUO Chaofeng LIU Haiyang WANG Gang CAI Qiang YAO Youwei 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2016年第1期127-133,共7页
A layered aluminoborophosphate(LABP-DDA) was hydrothermally synthesized using dodecylamine as a structure-directing agent, and was added into polyamide 66(PA66) to obtain nanocomposites, PA66/LABP-DDA, via melt in... A layered aluminoborophosphate(LABP-DDA) was hydrothermally synthesized using dodecylamine as a structure-directing agent, and was added into polyamide 66(PA66) to obtain nanocomposites, PA66/LABP-DDA, via melt intercalation method. The characterization results of transmission electron microscopy(TEM) and small angle X-ray scattering (SAXS) indicate that LABP-DDA has been successfully exfoliated into nano-layers of PA66 matrix. The unstable γ phase of PA66 was found in the composites with the help of X-ray diffraction(XRD) and differential scanning calorimetry(DSC). The heterogeneous nucleation effect of LABP-DDA resulted in an increasement of about 10 ℃ in melting temperature and an increasement of about 7% in crystallinity when compared with those of neat PA66. The introduction of LABP-DDA did not significantly affect the toughness and strength of PA66. The results of flammability test indicate that LABP-DDA possesses positive synergistic flame retarding effect in the presence of melamine polyphosphate(MPP) and the 77%PA66/(23-x)%MPP/x%LABP-DDA(x=1, 2) samples in thickness of 1.6 mm reached from Fail to V-1 rating based on UL94, compared with 77% PA66/23%MPE. 展开更多
关键词 Layered phosphate Polyamide 66 flame retardancy NANOCOMPOSITE
原文传递
Comparative study on the flame retardancy of CO_(2) and N_(2) during coal adiabatic oxidation process
10
作者 Xiyang Fang Bo Tan Haiyan Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期254-264,共11页
To test the effectiveness of N_(2) and CO_(2) in preventing coal from spontaneously combusting,researchers used an adiabatic oxidation apparatus to conduct an experiment with different temperature starting points.Non-... To test the effectiveness of N_(2) and CO_(2) in preventing coal from spontaneously combusting,researchers used an adiabatic oxidation apparatus to conduct an experiment with different temperature starting points.Non-adsorbed helium(He)was used as a reference gas,and coal and oxygen concentration temperature variations were analyzed after inerting.The results showed that He had the best cooling effect,N_(2) was second,and CO_(2) was the worst.At 70℃and 110℃,the impact of different gases on reducing oxygen concentration and the cooling effect was the same.However,at the starting temperature of 150℃,CO_(2) was less effective in lowering oxygen concentration at the later stage than He and N_(2).N_(2) and CO_(2) can prolong the flame retardation time of inert gas and reduce oxygen displacement with an initial temperature increase.When the starting temperature is the same,N_(2) injection cools coal samples and replaces oxygen more effectively than CO_(2) injection.The flame retardancy of inert gas is the combined result of the cooling effect of inert gas and the replacement of oxygen.These findings are essential for using inert flame retardant technology in the goaf. 展开更多
关键词 Coal spontaneous combustion Adiabatic oxidation Inert gas flame retardant flame retardant efficiency REPLACEMENT
下载PDF
Pyrolysis Mechanism of a Cyclotriphosphazene-Based Flame-Retardant Epoxy Resin by ReaxFF Molecular Dynamics
11
作者 Jiang Shuaijun Meng Weifeng +3 位作者 Wan Yongqing Qin Weihua Liu Xiaoqing Lan Yanhua 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第3期136-152,共17页
Cyclotriphosphazene derivatives can effectively improve the flame retardancy and fire safety of epoxy resins(EPs)via their influence on the pyrolysis process.In this work,the effects of hexa(5-methyl-2-pyridinoxyl)cyc... Cyclotriphosphazene derivatives can effectively improve the flame retardancy and fire safety of epoxy resins(EPs)via their influence on the pyrolysis process.In this work,the effects of hexa(5-methyl-2-pyridinoxyl)cyclotriphosphazene(HMPOP)incorporation on the initial pyrolysis of an EP at 500–3500 K were studied using the ReaxFF method.The pyrolysis fragments,initial reaction pathways,and main products were identified for the EP and EP/HMPOP composites.The activation energies were derived by fitting the weight percentage curves for solid species during the pyrolysis reactions and the obtained values were in good agreement with experimental data.The initial EP pyrolysis reactions included four major decomposition modes,which primarily involved the cleavage of C–O and C–N bonds.The main pyrolysis products were H_(2)O,CO,C_(2)H_(4),and CH_(2)O.HMPOP bonded with the oxygen-containing fragments to form larger molecular fragments and reduced the amounts of C_(0)–C_(4) products,especially that of the harmful gas CH_(2)O.Thus,HMPOP promoted the formation of carbon clusters and reduced the generation of combustible gases,ultimately decreasing the capacity for fire propagation. 展开更多
关键词 EPOXY CYCLOTRIPHOSPHAZENE REAXFF PYROLYSIS flame retardancy
下载PDF
A novel high-efficient P/N/Si-containing APP-based flame retardant with a silane coupling agent in its molecular structure for epoxy resin
12
作者 Qiang Sun Jinlei Wang +2 位作者 Xue Meng Jie Zhang Hong Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期137-147,共11页
A flame retardant containing multiple antiflaming elements usually exhibits high-efficient flame retardancy. Here, a novel P/N/Si-containing ammonium polyphosphate derivative(APTES-APP) is synthesized from ammonium po... A flame retardant containing multiple antiflaming elements usually exhibits high-efficient flame retardancy. Here, a novel P/N/Si-containing ammonium polyphosphate derivative(APTES-APP) is synthesized from ammonium polyphosphate(APP) and silane coupling agent(3-aminopropyl)triethoxysilane(APTES)via cation exchange, which is quite different in the chemical structure from APTES-modified APP for retaining silicon hydroxyls. APTES-APP is highly efficient for the epoxy resin. 8%(mass) APTES-APP imparts excellent flame retardancy to the epoxy resin, with a V-0 rating at the UL-94 test(1.6 mm)and an LOI value of 26%(vol). The peak heat release rate and total smoke production of the flameretardant epoxy resin are decreased by 68.1% and 31.3%, respectively. The synergy of P/N/Si contributes to the well-expanded char residue with a strong and dense surface layer, which is a very good barrier against heat and mass transfer. Besides, there is no significant deterioration in the mechanical properties of flame-retardant epoxy resin thanks to silicon hydroxyls forming hydrogen bonds with epoxy molecules. Meanwhile, other molecules can be grafted onto APTES-APP via these silicon hydroxyls, if needed.Briefly, this work has developed a new strategy for amino silane as flame retardants. In conjunction with a low-cost and simple preparation method, APTES-APP has a promising prospect in the high-performance flame-retardant epoxy. 展开更多
关键词 Ammonium polyphosphate Silane coupling agent All-in-one system flame retardancy Epoxy resin
下载PDF
Regulating the Localization of Intumescent Flame Retardant for Improving the Flame Retardancy of Ethylene-vinyl Acetate Copolymer Using Polyamide 6 as a Charring Agent
13
作者 高喜平 ZHAO Pan +3 位作者 YAO Dahu 陆昶 YUE Ruiheng SHENG Qi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期701-711,共11页
Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate ... Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy. 展开更多
关键词 intumescent flame retardant charring agent LOCALIZATION polyamide 6 ethylene vinyl acetate
下载PDF
Synergistic Flame Retardant Effect of Ammonium Polyphosphate and Aluminum Hydroxide on Polyurethane 被引量:2
14
作者 曾丽娟 YANG Liu +2 位作者 AI Lianghui YE Zhibin 刘平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期533-539,共7页
The flame-retardant properties of polyurethane(PU)containing ammonium polyphosphate(APP)and aluminum hydroxide(ATH)were investigated.Moreover,the flame retardant performance was investigated through thermogravimetric ... The flame-retardant properties of polyurethane(PU)containing ammonium polyphosphate(APP)and aluminum hydroxide(ATH)were investigated.Moreover,the flame retardant performance was investigated through thermogravimetric analysis,limiting oxygen index(LOI),vertical combustion(UL 94),and cone calorimeter.When 15 wt%APP and 5 wt%ATH were added together,the PU/15%APP/5%ATH sample shows better thermal stability and flame-retardant properties.When 15 wt%APP and 5 wt%ATH were added together,the LOI value of the PU/15%APP/5%ATH sample was 30.5%,and UL 94 V-0 rating was attained.Compared with PU,the peak heat release rate(PHRR),total heat release(THR),and average effective heat combustion(av-EHC)of the PU/15%APP/5%ATH sample decreased by 43.1%,21.0%,and 29.4%,respectively.In addition,the flame-retardant mechanism was investigated through cone calorimeter.The APP/ATH addition simultaneously exerted condensed phase and gas phase flame retardant effects.APP and ATH have synergistic flame retardant properties. 展开更多
关键词 POLYURETHANE ammonium polyphosphate aluminum hydroxide synergistic flame retardance flame retardancy mechanism
下载PDF
Vertically aligned montmorillonite aerogel-encapsulated polyethylene glycol with directional heat transfer paths for efficient solar thermal energy harvesting and storage
15
作者 Qijing Guo Cong Guo +2 位作者 Hao Yi Feifei Jia Shaoxian Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期907-916,共10页
The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in mon... The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications. 展开更多
关键词 montmorillonite aerogel polyethylene glycol phase change materials solar thermal energy storage flame retardant
下载PDF
Carrageenan Fiber Prepared by a New Process Route of Ba^(2+)Ion Pre-Crosslinking in the Spinning Solution
16
作者 Liting Jia Xiao Han +3 位作者 Cuixia Qiao Gang Zhao Yanzhi Xia Zhixin Xue 《Journal of Renewable Materials》 EI CAS 2024年第3期427-441,共15页
Ba^(2+)pre-crosslinked carrageenan fiber(Ba/CAF)was prepared by adding a small amount of Ba^(2+) to the carrageenan(CA)solution as the spinning solution.Ba/CAF-n/A,Ba/CAF-n/B and Ba/CAF-n/C were prepared with ethanol ... Ba^(2+)pre-crosslinked carrageenan fiber(Ba/CAF)was prepared by adding a small amount of Ba^(2+) to the carrageenan(CA)solution as the spinning solution.Ba/CAF-n/A,Ba/CAF-n/B and Ba/CAF-n/C were prepared with ethanol solution(combine A),high concentration BaCl_(2)solution(combine B)and low concentration BaCl_(2)solution(combine C),as coagulation bath and stretch bath,respectively.The combination of coagulation bath and stretch bath suitable for Ba^(2+) pre-crosslinking wet spinning was screened.The results showed that Ba^(2+) can induce the birefringence of the CA molecular chain,and the Ba^(2+) pre-crosslinking effect is the best when the CA mass fraction is 8.0 wt%.From the perspective of production safety,fiber performance and spinning cost,the coagulation bath of 3.5 wt%BaCl_(2)solution and stretch bath of 1.7 wt%BaCl_(2)solution,that is,combination C with low concentration BaCl_(2)solution,is the best choice.Ba/CAF-8.0/C was obtained under the best conditions.The linear intensity,water absorption and flame retardancy study showed that the breaking strength of Ba/CAF-8.0/C is as high as 1.61 cN/dtex,the water absorption was 649.2%and 574.3%,in deionized water and normal saline,respectively,and the LOI value reached 32. 展开更多
关键词 Carrageenan fiber Ba^(2+)ion pre-crosslinking wet spinning flame retardancy
下载PDF
Improved flame resistance properties of unsaturated polyester resin with TiO2-MXOY solid superacid
17
作者 Xuexi Chen Mei Wan +2 位作者 Ming Gao Yanxia Wang Deqi Yi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第9期2474-2482,共9页
Five SO4^2-/TiO2-MXOY solid super acids(SSA:Cu@Ti:SSA,Zr@Ti:SSA,Fe@Ti:SSA,Mn@Ti:SSA,Mo@Ti:SSA)were successfully prepared by sol-gel method,and its chemical structure and element content were characterized by X-ray dif... Five SO4^2-/TiO2-MXOY solid super acids(SSA:Cu@Ti:SSA,Zr@Ti:SSA,Fe@Ti:SSA,Mn@Ti:SSA,Mo@Ti:SSA)were successfully prepared by sol-gel method,and its chemical structure and element content were characterized by X-ray diffraction(XRD)analysis,Fourier transform infrared spectroscopy(FHIR)and energy dispersive spectroscopy(EDS).Then,a compound flame retardant system containing SSA and ammonium polyphosphate/montmorillonite(AM)were was introduced into an unsaturated polyester resin(UPR)to enhance the flame retardance.The effect of SSA on the flammability and thermal stability of the UPR was evaluated by the limiting oxygen index(LOI),cone calorimeter te st(CCT)and thermogravimetric analysis(TGA).The LOI results showed that the flame retardance of the UPR composites was significantly improved with the addition of SSA.Moreover,their heat release rate(HRR),total heat release(THR),the smoke production rate(SPR)and CO and CO2 yield were much decreased.In addition,the initial decomposition temperature of UPR/AM/S SA was delayed,indicating that their thermal stability was increased,and the residual char of UPR/AM/SSA was also increa sed due to strong catalytic of SSA ability for esterification and dehydration.Furthermore,the microstructure of the residual char after combustion of the UPR composites was studied by the scanning electron microscopy(SEM),and it was found that the char layer structure was more continuous and dense after the addition of the SSA.In sum up,the synergistic effect between SSA and AM was the main factor for the great improvement of flame retardant of UPR composites. 展开更多
关键词 flame retardance Unsaturated polyester resin(UPR) Solid super acid Cone calorimeter
下载PDF
A Study on a Magnesium-Based Layered Composite Used as a Flame Retardant for Phenolic Epoxy Resins
18
作者 Hongxiang Liu Neng Xiong +2 位作者 Songli Wang Wei Zhang Bo Yong 《Fluid Dynamics & Materials Processing》 EI 2022年第3期549-561,共13页
The effects of a magnesium-based layered composite on the flammability of a phenolic epoxy resin(EP)are studied.In order to produce the required composite material,first,magnesium hydroxide,aluminum salt and deionized... The effects of a magnesium-based layered composite on the flammability of a phenolic epoxy resin(EP)are studied.In order to produce the required composite material,first,magnesium hydroxide,aluminum salt and deionized water are mixed into a reactor according to a certain proportion to induce a hydrothermal reaction;then,the feed liquid is filtered out using a solid-liquid separation procedure;finally,the material is dried and crushed.In order to evaluate its effects on the flammability of the EP,first,m-phenylenediamine is added to EP and vacuum defoamation is performed;then,EP is poured into a polytetrafluoroethylene mold,cooled to room temperature and demoulded;finally,the magnesium-based layered composite is added to EP,and its flame retardance is characterized by thermogravimetric analysis,limiting oxygen index and cone calorimetry.The X-ray diffraction patterns show that the baseline of magnesium-based layered composite is stable and the front shape is sharp and symmetrical when the molar ratio of magnesium to aluminium is 3.2:1;with the addition of magnesium-based layered composite,the initial pyrolysis temperature of EP of 10%,15%and 30%magnesium-based layered composite decreases to 318.2°C,317.9°C and 357.1°C,respectively.After the reaction,the amount of residual carbon increases to 0.1%,3.45%and 8.3%,and the limiting oxygen index increases by 28.3%,29.1%and 29.6%,respectively.The maximum heat release rate of cone calorimeter decreases gradually.The optimum molar ratio of Mg:Al for green synthesis is 3.2:1,and the NO_(3)-intercalated magnesium-based layered composite has the best flame retardance properties. 展开更多
关键词 Phenolic epoxy resin layered composite green synthesis flame retardance anion intercalation
下载PDF
Levels and distribution of brominated flame retardants in the soil of Harbin in China 被引量:15
19
作者 WANG Xu REN Nanqi +2 位作者 QI Hong MA Wanli LI Yifan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第11期1541-1546,共6页
This study reports the presence of brominated flame retardants in the topsoil in and around Harbin, a city in northeastern China. Samples of soil were collected from 17 locations in 2006, and the levels of 9 polybromi... This study reports the presence of brominated flame retardants in the topsoil in and around Harbin, a city in northeastern China. Samples of soil were collected from 17 locations in 2006, and the levels of 9 polybrominated diphenylethers (PBDEs 17, 28, 47, 66, 99, 100, 153, 154, and 183) ranged from 2.45 to 55.9 pg/g dry weight (dw) with a mean of 26.3 pg/g dw. These levels are very low comparing with those for some cities in Europe and USA. BDE 209 and hexabromocyclododecane were the two dominant congeners, with mean concentrations of 520 pg/g dw and 1750 pg/g dw, respectively. The concentrations of the total nine PBDE congeners clearly decreased from urban areas to background, but the compositions of individual congeners differed. Proportions of heavier congeners decreased while those of lighter congeners increased, along urban-rural-background transect, providing evidence for an urban fractionation effect. Correlation analysis indicated similar sources for PBDEs, hexabromocyclododecane, and 1,2-bis(2,4,6-tribromophenoxy)-ethane from urban areas but pentabromoethylbenzene was probably present due to long-range atmospheric transport. Principal component analysis was used to determine the characteristics of the relationships among these brominated flame retardants in the field. 展开更多
关键词 brominated flame retardants polybrominated diphenylether RESIDUE
下载PDF
Synthesis and Structure of A Novel Caged Bicyclic Phosphate Flame Retardant 被引量:28
20
作者 Li, X Ou, YX +1 位作者 Zhang, YH Lian, DJ 《Chinese Chemical Letters》 SCIE CAS CSCD 2000年第10期887-890,共4页
PI novel caged bicyclic phosphate flame retardant tri(1-oxo-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane-methyl) phosphate (Trimer) was synthesized from 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octa... PI novel caged bicyclic phosphate flame retardant tri(1-oxo-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane-methyl) phosphate (Trimer) was synthesized from 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane (PEPA) and phosphorus oxychloride in this paper. Its structure was characterized by elemental analysis. FTIR, H-1 NMR. P-31 NMR and X-ray diffraction analysis. 展开更多
关键词 caged bicyclic phosphate flame retardant crystal structure
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部