Laminar flame speed is one of the most important intrinsic properties of a combustible mixture. Due to its importance, different methods have been developed to measure the laminar flame speed. This paper reviews the c...Laminar flame speed is one of the most important intrinsic properties of a combustible mixture. Due to its importance, different methods have been developed to measure the laminar flame speed. This paper reviews the constant-volume propagating spherical flame method for laminar flame speed measurement. This method can be used to measure laminar flame speed at high pressures and temperatures which are close to engine-relevant conditions. First, the propagating spherical flame method is introduced and the constant-volume method (CVM) and constant- pressure method (CPM) are compared. Then, main groups using the constant-volume propagating spherical flame method are introduced and large discrepancies in laminar flame speeds measured by different groups for the same mixture are identified. The sources of discrepancies in laminar flame speed measured by CVM are discussed and special attention is devoted to the error encountered in data processing. Different correlations among burned mass fraction, pressure, temperature and flame speed, which are used by different researchers to obtain laminar flame speed, are summarized. The performance of these correlations are examined, based on which recommendations are given. Finally, recommendations for future studies on the con- stant-volume propagating spherical flame method for laminar flame speed measurement are presented.展开更多
Laminar flame speeds of hydrogen/natural gas/air mixtures have been measured over a full range of fuel compositions(0-100%volumetric fraction of H_(2))and a wide range of equivalence ratio using Bunsen burner.High sen...Laminar flame speeds of hydrogen/natural gas/air mixtures have been measured over a full range of fuel compositions(0-100%volumetric fraction of H_(2))and a wide range of equivalence ratio using Bunsen burner.High sensitivity scientific CCD camera is use to capture the image of laminar flame.The reaction zone area is employed to calculate the laminar flame speed.The initial temperature and pressure of fuel air mixtures are 293 K and 1 atm.The laminar flame speeds of hydrogen/air mixture and natural gas/air mixture reach their maximum values 2.933 and 0.374 m/s when equivalence ratios equal to 1.7 and 1.1,respectively.The laminar flame speeds of hydrogen/natural gas/air mixtures rise with the increase of volumetric fraction of hydrogen.Moreover,the increase in laminar flame speed as the volumetric fraction of hydrogen increases presents an exponential increasing trend versus volumetric fraction of hydrogen.Empirical formulas to calculate the laminar flame speeds of hydrogen,natural gas,and hydrogen/natural gas mixtures are also given.Using these formulas,the laminar flame speed at different hydrogen fractions and equivalence ratios can be calculated.展开更多
The laminar flame speeds of ammonia mixed with syngas at a high pressure, temperature, and different syngas ratios were measured. The data obtained were fitted at different pressures, temperatures, syngas ratios, and ...The laminar flame speeds of ammonia mixed with syngas at a high pressure, temperature, and different syngas ratios were measured. The data obtained were fitted at different pressures, temperatures, syngas ratios, and equivalence ratios. Four kinetic models (the Glarborg model, Shrestha model, Mei model, and Han model) were compared and validated with experimental data. Pathway, sensitivity and radical pool analysis are conducted to find out the deep kinetic insight on ammonia oxidation and NO formation. The pathway analysis shows that H abstraction reactions and NHi combination reactions play important roles in ammonia oxidation. NO formation is closely related to H, OH, the O radical produced, and formation reactions. NO is mainly formed from reaction, HNO+ H= NO+ H2. Furthermore, both ammonia oxidation and NO formation are sensitive to small radical reactions and ammonia related reactions.展开更多
Laminar flame speeds of natural gas-carbon monoxide-air mixtures are calculated by CHEMKIN II with GRI Mech-3.0 over a large range of fuel compositions,equivalence ratios,and initial temperatures.The calculated result...Laminar flame speeds of natural gas-carbon monoxide-air mixtures are calculated by CHEMKIN II with GRI Mech-3.0 over a large range of fuel compositions,equivalence ratios,and initial temperatures.The calculated results of natural gas are compared with previous experimental results that show a good agreement.The calculated laminar flame speeds of natural gas-carbon monoxide-air mixtures show a nonmonotonic increasing trend with volumetric fraction of carbon monoxide and an increasing trend with the increase of initial temperature of mixtures.The maximum laminar flame speed of certain fuel blend reaches its biggest value when there is 92%volumetric fraction of carbon monoxide in fuel at different initial temperatures.Five stoichiometric natural gas-carbon monoxide-air mixtures are selected to study the detailed chemical structure of natural gas-carbon monoxide-air mixtures.The results show that at stoichiometric condition,the fuel blend with 80%volumetric fraction of carbon monoxide has the biggest laminar flame speed,and the C normalized total production rate of methane with 80%volumetric fraction of carbon monoxide is the largest of the five stoichiometric mixtures.展开更多
The effect of upstream velocity pertuibations on the response of a premixed flame was investigated in terms of the flame transfer function dependency on excitation frequency.In this study,the assumption of constant fl...The effect of upstream velocity pertuibations on the response of a premixed flame was investigated in terms of the flame transfer function dependency on excitation frequency.In this study,the assumption of constant flame speed was extended and the effect of flame speed development was considered;i.e.,the flame speed would grow with the time after ignition or with the distance from a flame-holder.In the present study,the kinematics of a conical flame was investigated by linearization of the front tracking equation of flame to uniform and convected fluctuations of the flow velocity and the response was compared with that of a V-shaped flame and the experimental data in the previous studies.The results show that the effect of flame speed development could influence a decreasing gain and increase the phase of the flame response to the uniform velocity oscillations in low and moderate frequencies.Comparing the variations in the gain of flame response upon normalized frequency,show that a conical flame has lower values than the V-flame.In other woods,these flames might be less susceptible to combustion instabilities than the V-flames.Furthennore,the variations in phase of the V-flames responses,which show a quasi-linear behavior with normalized frequency,have higher values than the saturated behavior in phase of the conical flame responses.Also,considering that the flame speed development induces an increase in the gain and phase of the conical flame response to the convected velocity oscillations in certain frequencies;because the developed flame front has longer length in comparison to the flame front in constant flame speed model.Therefore,the flame length may be longer than convective wavelength and the heat release would be generated in different points of the flame;consequently the flow oscillations might exert a stronger impact on the unsteady heat release fluctuations.展开更多
The laminar flame speed is one of the most fundamental properties of a fuel/air mixture.It determines the fuel burning rate in combustion engines and is an important target used to validate chemical models.Due to its ...The laminar flame speed is one of the most fundamental properties of a fuel/air mixture.It determines the fuel burning rate in combustion engines and is an important target used to validate chemical models.Due to its importance,accurate measurement of the laminar flame speed receives great attention and different experimental methods have been developed.This review first introduces the laminar flame speed as well as its significance and dependence on different factors.Then,different experimental methods for the laminar flame speed measurement are described.Since the outwardly propagating spherical flame method is currently the most popular method for laminar flame speed measurement,its challenges and recent advances are reviewed.Both the constant pressure method and constant volume method using propagating spherical flames are discussed.展开更多
A new method of preparation of biomaterial composite coating by the techniqueof subsonic thermal spraying was discussed in this paper. Ti_6Al_4V and pure Ti were chosen assubstrate and sublayer material respectively a...A new method of preparation of biomaterial composite coating by the techniqueof subsonic thermal spraying was discussed in this paper. Ti_6Al_4V and pure Ti were chosen assubstrate and sublayer material respectively and the working layer was sprayed with biomaterialhydroxyapatite (HAP), forming the composite coating. The experiments of heat shock and tensilestrength showed that the bonding strength between coating and substrate is almost as same as that ofspecimen in which Ni/Al powder was adopted as sublayer. The phases of TiN, TiO_2, and Ti_2O_3 wereformed in the sublayer, which are free of toxic and have no side effects. The powder of workinglayer HAP was decomposed partly during spraying, but it can be solved by later treatment.展开更多
In this research combustion of aluminum dust particles in a quiescent medium with spatially discrete sources distributed in a random way was studied by a numerical approach.A new thermal model was generated to estimat...In this research combustion of aluminum dust particles in a quiescent medium with spatially discrete sources distributed in a random way was studied by a numerical approach.A new thermal model was generated to estimate flame propagation speed in a lean/rich reaction medium.Flame speed for different particle diameters and the effects of various oxidizers such as carbon dioxide and oxygen on flame speed were studied.Nitrogen was considered the inert gas.In addition,the quenching distance and the minimum ignition energy(MIE) were studied as a function of dust concentration.Different burning time models for aluminum were employed and their results were compared with each other.The model was based on conduction heat transfer mechanism using the heat point source method.The combustion of single-particle was first studied and the solution was presented.Then the dust combustion was investigated using the superposition principle to include the effects of surrounding particles.It is found that larger particles have higher values of quenching distance in comparison with smaller particles in an assumed dust concentration.With the increase of dust concentration the value of MIE would be decreased for an assumed particle diameter.Considering random discrete heat sources method,the obtained results of random distribution of fuel particles in space provide closer and realistic predictions of the combustion physics of aluminum dust flame as compared with the experimental findings.展开更多
The local burning velocity and the flame displacement speed are the dominant properties in the mechanism of turbulent premixed combustion. The flame displacement speed and the local burning velocity have been investig...The local burning velocity and the flame displacement speed are the dominant properties in the mechanism of turbulent premixed combustion. The flame displacement speed and the local burning velocity have been investigated separately, because the flame displacement speed can be used for the discussion of flame-turbulence interactions and the local burning velocity can be used for the discussion of the inner structure of turbulent premixed flames. In this study, to establish the basis for the discussion on the effects of turbulence on the inner structure of turbulent premixed flames, the indirect relationship between the flame displacement speed and the local burning velocity was investigated by the flame stretch, the flame curvature, and the tangential strain rate using DNS database with different density ratios. It was found that for the local tangential strain rate and the local flame curvature, the local burning velocity and the flame displacement speed had the opposite correlations in each density ratio case. Therefore, it is considered that the local burning velocity and the flame displacement speed have a negative correlation.展开更多
The flame displacement speed is one of the major characteristics in turbulent premixed flames. The flame displacement speed is experimentally obtained from the displacement normal to the flame surface, while it is num...The flame displacement speed is one of the major characteristics in turbulent premixed flames. The flame displacement speed is experimentally obtained from the displacement normal to the flame surface, while it is numerically evaluated by the transport equation of the flame surface. The flame displacement speeds obtained both experimentally and numerically cannot be compared directly because their definitions are different. In this study, two kinds of experimental flame displacement speeds—involving the mean inflow velocity and the local flow velocity—were simulated using the DNS data with the different Lewis numbers, and were compared with the numerical flame displacement speed. The simulated experimental flame displacement speed involving the mean inflow velocity had no correlation with the numerical flame displacement speed, while the simulated displacement speed involving the local flow velocity had a clear correlation with the numerical displacement speed in the cases of higher Lewis number than unity. The correlation coefficient of the simulated displacement speed involving the local flow velocity with the numerical displacement speed had a maximum value on the isosurface of the reaction progress variable with the maximum temperature gradient where the dilation effect of the flame is strongest.展开更多
The laminar flame propagation of 1-heptene/air mixtures covering equivalence ratios from 0.7 to 1.5 is investigated in a constant-volume cylindrical combustion vessel at 373K and elevated pressures (1, 2, 5, and 10 at...The laminar flame propagation of 1-heptene/air mixtures covering equivalence ratios from 0.7 to 1.5 is investigated in a constant-volume cylindrical combustion vessel at 373K and elevated pressures (1, 2, 5, and 10 atm). Laminar flame speed and Markstein length are derived from the recorded schlieren images. A kinetic model of 1-heptene combustion is developed based on our previous kinetic model of 1-hexene. The model is validated against the laminar flame speed data measured in this work and the ignition delay time data in literature. Modeling analyses, such as sensitivity analysis and rate of production analysis, are performed to help understand the high temperature chemistry of 1-heptene under various pressures and its influence on the laminar flame propagation. Furthermore, the laminar flame propagation of 1-heptene/air mixtures is compared with that of n-heptane/air mixtures reported in our previous work. The laminar flame speed values of 1-heptene/air mixtures are observed to be faster than those of n-heptane/air mixtures under most conditions due to the enhanced exothermicity and reactivity.展开更多
Oxygen rich combustion is a mean to increase the energy efficiency and to contribute to CO2 capture. Influence of oxygen enriched air on the stability of methane flames from non premixed laminar jets has been investig...Oxygen rich combustion is a mean to increase the energy efficiency and to contribute to CO2 capture. Influence of oxygen enriched air on the stability of methane flames from non premixed laminar jets has been investigated experimentally. The burner consists of two coaxial jets: methane flowing out of the inner, oxidizer from the outer. The flame behavior is studied according to the proportion of oxygen in the oxidizer jet, the oxidizer and the methane jets velocities. The flame is either anchored to the burner, lifted, stationary or not or blown-out. The addition of oxygen produces a decrease of the lift height, a reduction of the length of the reaction zone and an increase in the soot emission. These results have been reported into diagrams of stability where the flame configurations are connected to the competition between the dynamic effect of the injection velocity and the chemical effect of oxygen addition.展开更多
The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion ba...The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents.展开更多
基金supported by the National Natural Science Foundation of China(51322602)
文摘Laminar flame speed is one of the most important intrinsic properties of a combustible mixture. Due to its importance, different methods have been developed to measure the laminar flame speed. This paper reviews the constant-volume propagating spherical flame method for laminar flame speed measurement. This method can be used to measure laminar flame speed at high pressures and temperatures which are close to engine-relevant conditions. First, the propagating spherical flame method is introduced and the constant-volume method (CVM) and constant- pressure method (CPM) are compared. Then, main groups using the constant-volume propagating spherical flame method are introduced and large discrepancies in laminar flame speeds measured by different groups for the same mixture are identified. The sources of discrepancies in laminar flame speed measured by CVM are discussed and special attention is devoted to the error encountered in data processing. Different correlations among burned mass fraction, pressure, temperature and flame speed, which are used by different researchers to obtain laminar flame speed, are summarized. The performance of these correlations are examined, based on which recommendations are given. Finally, recommendations for future studies on the con- stant-volume propagating spherical flame method for laminar flame speed measurement are presented.
基金supported by the National Basic Research Program of China(No.2005CB221206).
文摘Laminar flame speeds of hydrogen/natural gas/air mixtures have been measured over a full range of fuel compositions(0-100%volumetric fraction of H_(2))and a wide range of equivalence ratio using Bunsen burner.High sensitivity scientific CCD camera is use to capture the image of laminar flame.The reaction zone area is employed to calculate the laminar flame speed.The initial temperature and pressure of fuel air mixtures are 293 K and 1 atm.The laminar flame speeds of hydrogen/air mixture and natural gas/air mixture reach their maximum values 2.933 and 0.374 m/s when equivalence ratios equal to 1.7 and 1.1,respectively.The laminar flame speeds of hydrogen/natural gas/air mixtures rise with the increase of volumetric fraction of hydrogen.Moreover,the increase in laminar flame speed as the volumetric fraction of hydrogen increases presents an exponential increasing trend versus volumetric fraction of hydrogen.Empirical formulas to calculate the laminar flame speeds of hydrogen,natural gas,and hydrogen/natural gas mixtures are also given.Using these formulas,the laminar flame speed at different hydrogen fractions and equivalence ratios can be calculated.
基金supported by the National Natural Science Foundation of China(52106182)the National Science and Technology Major Project(2019-III-0018-0062)+2 种基金Chinese Postdoctoral Science Foundation(2021M692537)The supports from the State Key Laboratory of Engines at Tianjin University(K2021-02)Key Laboratory for Thermal Science and Power Engineering of Ministry of Education in Tsinghua University are also appreciated.
文摘The laminar flame speeds of ammonia mixed with syngas at a high pressure, temperature, and different syngas ratios were measured. The data obtained were fitted at different pressures, temperatures, syngas ratios, and equivalence ratios. Four kinetic models (the Glarborg model, Shrestha model, Mei model, and Han model) were compared and validated with experimental data. Pathway, sensitivity and radical pool analysis are conducted to find out the deep kinetic insight on ammonia oxidation and NO formation. The pathway analysis shows that H abstraction reactions and NHi combination reactions play important roles in ammonia oxidation. NO formation is closely related to H, OH, the O radical produced, and formation reactions. NO is mainly formed from reaction, HNO+ H= NO+ H2. Furthermore, both ammonia oxidation and NO formation are sensitive to small radical reactions and ammonia related reactions.
基金supported by the National Basic Research Program of China(No.2005CB221206).
文摘Laminar flame speeds of natural gas-carbon monoxide-air mixtures are calculated by CHEMKIN II with GRI Mech-3.0 over a large range of fuel compositions,equivalence ratios,and initial temperatures.The calculated results of natural gas are compared with previous experimental results that show a good agreement.The calculated laminar flame speeds of natural gas-carbon monoxide-air mixtures show a nonmonotonic increasing trend with volumetric fraction of carbon monoxide and an increasing trend with the increase of initial temperature of mixtures.The maximum laminar flame speed of certain fuel blend reaches its biggest value when there is 92%volumetric fraction of carbon monoxide in fuel at different initial temperatures.Five stoichiometric natural gas-carbon monoxide-air mixtures are selected to study the detailed chemical structure of natural gas-carbon monoxide-air mixtures.The results show that at stoichiometric condition,the fuel blend with 80%volumetric fraction of carbon monoxide has the biggest laminar flame speed,and the C normalized total production rate of methane with 80%volumetric fraction of carbon monoxide is the largest of the five stoichiometric mixtures.
文摘The effect of upstream velocity pertuibations on the response of a premixed flame was investigated in terms of the flame transfer function dependency on excitation frequency.In this study,the assumption of constant flame speed was extended and the effect of flame speed development was considered;i.e.,the flame speed would grow with the time after ignition or with the distance from a flame-holder.In the present study,the kinematics of a conical flame was investigated by linearization of the front tracking equation of flame to uniform and convected fluctuations of the flow velocity and the response was compared with that of a V-shaped flame and the experimental data in the previous studies.The results show that the effect of flame speed development could influence a decreasing gain and increase the phase of the flame response to the uniform velocity oscillations in low and moderate frequencies.Comparing the variations in the gain of flame response upon normalized frequency,show that a conical flame has lower values than the V-flame.In other woods,these flames might be less susceptible to combustion instabilities than the V-flames.Furthennore,the variations in phase of the V-flames responses,which show a quasi-linear behavior with normalized frequency,have higher values than the saturated behavior in phase of the conical flame responses.Also,considering that the flame speed development induces an increase in the gain and phase of the conical flame response to the convected velocity oscillations in certain frequencies;because the developed flame front has longer length in comparison to the flame front in constant flame speed model.Therefore,the flame length may be longer than convective wavelength and the heat release would be generated in different points of the flame;consequently the flow oscillations might exert a stronger impact on the unsteady heat release fluctuations.
基金supported by the National Natural Science Foundation of China(Grant Nos.91741126,91541204and 51322602)
文摘The laminar flame speed is one of the most fundamental properties of a fuel/air mixture.It determines the fuel burning rate in combustion engines and is an important target used to validate chemical models.Due to its importance,accurate measurement of the laminar flame speed receives great attention and different experimental methods have been developed.This review first introduces the laminar flame speed as well as its significance and dependence on different factors.Then,different experimental methods for the laminar flame speed measurement are described.Since the outwardly propagating spherical flame method is currently the most popular method for laminar flame speed measurement,its challenges and recent advances are reviewed.Both the constant pressure method and constant volume method using propagating spherical flames are discussed.
基金This project is financially supported by the Natural Science Foundation ofHeilongjiang Province (No. E0232)
文摘A new method of preparation of biomaterial composite coating by the techniqueof subsonic thermal spraying was discussed in this paper. Ti_6Al_4V and pure Ti were chosen assubstrate and sublayer material respectively and the working layer was sprayed with biomaterialhydroxyapatite (HAP), forming the composite coating. The experiments of heat shock and tensilestrength showed that the bonding strength between coating and substrate is almost as same as that ofspecimen in which Ni/Al powder was adopted as sublayer. The phases of TiN, TiO_2, and Ti_2O_3 wereformed in the sublayer, which are free of toxic and have no side effects. The powder of workinglayer HAP was decomposed partly during spraying, but it can be solved by later treatment.
文摘In this research combustion of aluminum dust particles in a quiescent medium with spatially discrete sources distributed in a random way was studied by a numerical approach.A new thermal model was generated to estimate flame propagation speed in a lean/rich reaction medium.Flame speed for different particle diameters and the effects of various oxidizers such as carbon dioxide and oxygen on flame speed were studied.Nitrogen was considered the inert gas.In addition,the quenching distance and the minimum ignition energy(MIE) were studied as a function of dust concentration.Different burning time models for aluminum were employed and their results were compared with each other.The model was based on conduction heat transfer mechanism using the heat point source method.The combustion of single-particle was first studied and the solution was presented.Then the dust combustion was investigated using the superposition principle to include the effects of surrounding particles.It is found that larger particles have higher values of quenching distance in comparison with smaller particles in an assumed dust concentration.With the increase of dust concentration the value of MIE would be decreased for an assumed particle diameter.Considering random discrete heat sources method,the obtained results of random distribution of fuel particles in space provide closer and realistic predictions of the combustion physics of aluminum dust flame as compared with the experimental findings.
文摘The local burning velocity and the flame displacement speed are the dominant properties in the mechanism of turbulent premixed combustion. The flame displacement speed and the local burning velocity have been investigated separately, because the flame displacement speed can be used for the discussion of flame-turbulence interactions and the local burning velocity can be used for the discussion of the inner structure of turbulent premixed flames. In this study, to establish the basis for the discussion on the effects of turbulence on the inner structure of turbulent premixed flames, the indirect relationship between the flame displacement speed and the local burning velocity was investigated by the flame stretch, the flame curvature, and the tangential strain rate using DNS database with different density ratios. It was found that for the local tangential strain rate and the local flame curvature, the local burning velocity and the flame displacement speed had the opposite correlations in each density ratio case. Therefore, it is considered that the local burning velocity and the flame displacement speed have a negative correlation.
文摘The flame displacement speed is one of the major characteristics in turbulent premixed flames. The flame displacement speed is experimentally obtained from the displacement normal to the flame surface, while it is numerically evaluated by the transport equation of the flame surface. The flame displacement speeds obtained both experimentally and numerically cannot be compared directly because their definitions are different. In this study, two kinds of experimental flame displacement speeds—involving the mean inflow velocity and the local flow velocity—were simulated using the DNS data with the different Lewis numbers, and were compared with the numerical flame displacement speed. The simulated experimental flame displacement speed involving the mean inflow velocity had no correlation with the numerical flame displacement speed, while the simulated displacement speed involving the local flow velocity had a clear correlation with the numerical displacement speed in the cases of higher Lewis number than unity. The correlation coefficient of the simulated displacement speed involving the local flow velocity with the numerical displacement speed had a maximum value on the isosurface of the reaction progress variable with the maximum temperature gradient where the dilation effect of the flame is strongest.
基金supported by the National Key R&D Program of China (No.2017YFA0402800)National Natural Science Foundation of China (No.51622605 and No.91541201)Shanghai Science and Technology Committee (No.17XD1402000)
文摘The laminar flame propagation of 1-heptene/air mixtures covering equivalence ratios from 0.7 to 1.5 is investigated in a constant-volume cylindrical combustion vessel at 373K and elevated pressures (1, 2, 5, and 10 atm). Laminar flame speed and Markstein length are derived from the recorded schlieren images. A kinetic model of 1-heptene combustion is developed based on our previous kinetic model of 1-hexene. The model is validated against the laminar flame speed data measured in this work and the ignition delay time data in literature. Modeling analyses, such as sensitivity analysis and rate of production analysis, are performed to help understand the high temperature chemistry of 1-heptene under various pressures and its influence on the laminar flame propagation. Furthermore, the laminar flame propagation of 1-heptene/air mixtures is compared with that of n-heptane/air mixtures reported in our previous work. The laminar flame speed values of 1-heptene/air mixtures are observed to be faster than those of n-heptane/air mixtures under most conditions due to the enhanced exothermicity and reactivity.
文摘Oxygen rich combustion is a mean to increase the energy efficiency and to contribute to CO2 capture. Influence of oxygen enriched air on the stability of methane flames from non premixed laminar jets has been investigated experimentally. The burner consists of two coaxial jets: methane flowing out of the inner, oxidizer from the outer. The flame behavior is studied according to the proportion of oxygen in the oxidizer jet, the oxidizer and the methane jets velocities. The flame is either anchored to the burner, lifted, stationary or not or blown-out. The addition of oxygen produces a decrease of the lift height, a reduction of the length of the reaction zone and an increase in the soot emission. These results have been reported into diagrams of stability where the flame configurations are connected to the competition between the dynamic effect of the injection velocity and the chemical effect of oxygen addition.
基金supported by the National Natural Science Foundation of China(52106284)the Natural Science Foundation of Hebei Province(B2021507001)support of Project to Promote Innovation in Doctoral Research at CPPU(BSKY202302).
文摘The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents.