Objective:To explore the correlation between epicardial fat thickness(EFT),aortic velocity propagation(AVP),and abdominal aortic intima-media thickness(AA-IMT)in patients with subclinical hypothyroidism(SH).Additional...Objective:To explore the correlation between epicardial fat thickness(EFT),aortic velocity propagation(AVP),and abdominal aortic intima-media thickness(AA-IMT)in patients with subclinical hypothyroidism(SH).Additionally,to compare these indicators between SH patients and healthy individuals,providing a new theoretical basis for the clinical prevention and treatment of cardiovascular diseases.Method:Clinical data from 50 SH patients(23 males and 27 females)and 50 healthy outpatient examinees(22 males and 28 females)were analyzed.The participants were selected from January 2022 to December 2023 at Loudi Central Hospital.EFT,AVP,and AA-IMT were measured,and their correlations were analyzed.Results:SH patients had significantly higher EFT and AA-IMT levels than the control group,while their AVP was significantly lower,with these differences being statistically significant(P<0.05).Correlation analysis revealed a significant negative correlation between EFT and AVP(P<0.001),a significant positive correlation between EFT and AAO-IMT(P<0.001),and a significant negative correlation between AVP and AAO-IMT(P<0.001).Multivariate binary logistic regression analysis identified increased EFT,decreased AVP,and increased AAO-IMT as independent risk factors for SH patients.Conclusion:In SH patients,EFT and AAO-IMT are elevated,whereas AVP is reduced.EFT and AVP are significantly correlated with AAO-IMT.EFT and AAO-IMT can serve as reliable indicators for evaluating subclinical atherosclerosis in SH patients,providing a diagnostic basis for clinical practice.展开更多
Objective Anthracycline chemotherapeutic agents have significant cardiotoxicity.The present study emphasized the effect of anthracycline chemotherapy drugs on left ventricular(LV)myocardial stiffness in breast cancer ...Objective Anthracycline chemotherapeutic agents have significant cardiotoxicity.The present study emphasized the effect of anthracycline chemotherapy drugs on left ventricular(LV)myocardial stiffness in breast cancer patients by measuring the intrinsic wave velocity propagation(IVP),and evaluating the potential clinical value of IVP in detecting early LV diastolic function impairment.Methods A total of 68 newly diagnosed breast cancer patients,who were treated with anthracycline-based chemotherapy,were analyzed.Transthoracic echocardiography was performed at baseline(T0),and after 1,2,3,4 and 8 chemotherapeutic cycles(T1,T2,T3,T4 and T5,respectively).Then,the IVP,LV strain parameters[global longitudinal strain(GLS),longitudinal peak strain rate at systole(LSRs),longitudinal peak strain rate at early diastole(LSRe),longitudinal peak strain rate at late diastole(LSRa),and the E/LSRe ratio],and conventional echocardiographic parameters were obtained and further analyzed.A relative reduction of>15%in GLS was considered a marker of early LV subclinical dysfunction.Results Compared to the T0 stage,IVP significantly increased at the T1 stage.However,there were no significant changes in GLS,LSRs,or LSRe between the T0 and T1 stages.These parameters significantly decreased from the T2 stage.LSRa started to significantly decrease at the T5 stage,and the E/LSRe ratio started to significantly increase at the T3 stage(all P<0.05).At the T0 stage,IVP(AUC=0.752,P<0.001)had a good predictive value for LV subclinical dysfunction after chemotherapy.Conclusions IVP is a potentially sensitive parameter for the early clinical assessment of anthracycline-related cardiac diastolic impairment.展开更多
The Andaman Sea has been a classic study region for internal solitary waves(ISWs)for several decades,and extraordinarily large ISWs are characteristic of the Andaman Sea in the Indian Ocean.This paper presents results...The Andaman Sea has been a classic study region for internal solitary waves(ISWs)for several decades,and extraordinarily large ISWs are characteristic of the Andaman Sea in the Indian Ocean.This paper presents results on the estimation of the propagation velocity of ISWs in the Andaman Sea that were tracked using 195 image pairs acquired by MODIS National Aeronautics and Space Administration(NASA)Terra/Aqua satellites between January 2014 and December 2018.A total of 562 ISWs were identified during the period,and the results of the propagation velocity distribution of ISWs in the Andaman Sea are presented.The estimated propagation velocity of ISWs agrees well with the theoretical results derived from the Korteweg-de Vries(KdV)equation using monthly climatology stratification data and local bathymetry.The ISW propagation velocity decreases as they propagate from deep to shallow water;the maximum propagation velocity of 3.27 m/s was estimated on the western side of the Nicobar Islands and minimum speed of 0.54 m/s occurred in the shallow water region of the southeastern Andaman Sea.The results show that the ISW propagation characteristics differ in the northern,central,and southern regions of the Andaman Sea.In the northern Andaman Sea,the velocity of ISWs propagating westward was greater than that of ISWs propagating eastward at the same water depth.In the central Andaman Sea,the propagation velocity of the ISWs differed over a small area at a depth of 2500 m,and the velocity of ISWs in the deep mixing layer in winter was higher than that in the shallow mixing layer in spring.Monthly variations in ISW propagation velocity were analyzed in the southern Andaman Sea,and the velocity of ISWs differed greatly in shallow water and was not significantly different in deep water.Water depth and monthly stratification play vital roles in controlling the phase speed of ISWs in the Andaman Sea.This study will provide a basis for the propagation and prediction of ISWs in the Andaman Sea.展开更多
O-mode Doppler reflectometer has been successfully developed as an important diagnostic system on HL-2A. It can be used to measure the turbulence propagation in both plasma edge and confinement zone. The Doppler refle...O-mode Doppler reflectometer has been successfully developed as an important diagnostic system on HL-2A. It can be used to measure the turbulence propagation in both plasma edge and confinement zone. The Doppler reflectometer system consists of two fixed frequency homodyne receivers: 15 GHz (corresponding to cutoff density of 0.3×10^19 m^-3) and 33 GHz (corresponding to cutoff density of 1.35× 10^19 m^-3). The Doppler reflectometry principle and the experimental arrangements on HL-2A are presented. Meanwhile, the experimental Doppler reflectometric spectra under different discharge conditions, with and without ECRH, were obtained. Furthermore, the turbulence propagation velocity change and the profile were also observed in different discharge conditions.展开更多
Using mesoscale eddy trajectory product derived from satellite altimetry data from 1993 to 2017,this study analyzes the statistical characteristics of spatiotemporal distribution of mesoscale eddy propagation velociti...Using mesoscale eddy trajectory product derived from satellite altimetry data from 1993 to 2017,this study analyzes the statistical characteristics of spatiotemporal distribution of mesoscale eddy propagation velocities(C)in the South China Sea(SCS)deep basin with depths>1000 m.Climatologically,the zonal propagation velocities(cx)are westwards in the whole basin,and the meridional velocities(cy)are southwards in the northwestern basin,and northwards in the southeastern basin.The variation of cy with longitude is consistent with that of the background meridional currents with correlation coefficient R2 of 0.96,while the variation of cx is related both to the background zonal currents andβeffect.The propagation velocities characterize significant seasonality with the minimum magnitude occurring in summer and the maximum in winter for cx and C.Interannually,larger values of cx and cy mostly occurred in La Ni?a years in the negative phase of the Pacific Decadal Oscillation(PDO).Mesoscale eddies move fast at the beginning and end of their life span,i.e.,at their growth and dissipation periods,and slowly during their stable"midlife"period.This trend is negatively correlated with the rotating tangential velocity with R2 of–0.93.Eddies with extreme propagation velocities are defined,which are slower(faster)than 1.5 cm/s(15.4 cm/s)and take 1.5%(1.9%)of the total eddies.The extremely slow-moving(fastmoving)eddies tend to appear in the middle(on the edge)of the basin,and mostly occur in summer(winter).The mechanism analysis reveals that the spatiotemporal distributions of the propagation velocities of mesoscale eddies in the SCS are modulated by the basin-scale background circulation.展开更多
In coal industry,gas explosion accidents emerge constantly,causing enormous casualties and poorer material property.In the course of studying gas exploding mechanism,the propagation velocity of the flame wave front is...In coal industry,gas explosion accidents emerge constantly,causing enormous casualties and poorer material property.In the course of studying gas exploding mechanism,the propagation velocity of the flame wave front is one of the most important factors.A set of flame velocity measuring system was designed according to the horizontal pipelined experimental facility of North University of China to study the effects of the quantity and blockage ratio of the circle ring obstacle on the flame propagation velocity in the inclosed tube.The research results show that the obstacle has obviously accelerating effect on the flame wave of gas explosion With the increase of quantity and blockage ratio of the obstacle,the flame accelerating effect becomes more obvious and the flame accelerating persistence is intenser,of which the effect of the quantity of the obstacle on the flame accelerating persistence is larger,but the effect of the blockage ratio of the obstacle on the flame accelerating persistenceis not obvious.展开更多
An experimental-numerical method for measuring dynamic crack propagatingvelocities under stress wave loading is established in this paper. The experiments of thethree-point bend specimen are done on the improved Hopki...An experimental-numerical method for measuring dynamic crack propagatingvelocities under stress wave loading is established in this paper. The experiments of thethree-point bend specimen are done on the improved Hopkinson bar. Deflection of loading point,dynamic load and instantaneous crack length are measured, then crack propagating velocities arecalculated. Experiments on 40Cr steel show that the results given by this method have a goodagreement with that obtained by the resistance fracture gage method. Therefore this method isfeasible for measuring crack propagating velocities under high loading rate and will have wideapplication.展开更多
This paper presents a self-contained description on the configuration of propagator method(PM)to calculate the electron velocity distribution function(EVDF) of electron swarms in gases under DC electric and magnetic f...This paper presents a self-contained description on the configuration of propagator method(PM)to calculate the electron velocity distribution function(EVDF) of electron swarms in gases under DC electric and magnetic fields crossed at a right angle. Velocity space is divided into cells with respect to three polar coordinates v,θ and f. The number of electrons in each cell is stored in three-dimensional arrays. The changes of electron velocity due to acceleration by the electric and magnetic fields and scattering by gas molecules are treated as intercellular electron transfers on the basis of the Boltzmann equation and are represented using operators called the propagators or Green’s functions. The collision propagator, assuming isotropic scattering, is basically unchanged from conventional PMs performed under electric fields without magnetic fields. On the other hand, the acceleration propagator is customized for rotational acceleration under the action of the Lorentz force. The acceleration propagator specific to the present cell configuration is analytically derived. The mean electron energy and average electron velocity vector in a model gas and SF6 were derived from the EVDF as a demonstration of the PM under the Hall deflection and they were in a fine agreement with those obtained by Monte Carlo simulations. A strategy for fast relaxation is discussed, and extension of the PM for the EVDF under AC electric and DC/AC magnetic fields is outlined as well.展开更多
Nearfield acoustic holography in a moving medium is a technique which is typically suitable for sound sources identification in a flow.In the process of sound field reconstruction,sound pressure is usually used as the...Nearfield acoustic holography in a moving medium is a technique which is typically suitable for sound sources identification in a flow.In the process of sound field reconstruction,sound pressure is usually used as the input,but it may contain considerable background noise due to the interactions between microphones and flow moving at a high velocity.To avoid this problem,particle velocity is an alternative input,which can be obtained by using laser Doppler velocimetry in a non-intrusive way.However,there is a singular problem in the conventional propagator relating the particle velocity to the pressure,and it could lead to significant errors or even false results.In view of this,in this paper,nonsingular propagators are deduced to realize accurate reconstruction in both cases that the hologram is parallel to and perpendicular to the flow direction.The advantages of the proposed method are analyzed,and simulations are conducted to verify the validation.The results show that the method can overcome the singular problem effectively,and the reconstruction errors are at a low level for different flow velocities,frequencies,and signal-to-noise ratios.展开更多
The propagator for a time-dependent damped harmonic oscillator with a force quadratic in velocity is obtained by making a specific coordinate transformation and by using the method of time-dependent invariant.
This paper presents an experimental study on the creeping discharge propagating over the pressboard surface in two vegetable oils(PFAE(palm fatty acid ester)oil and CRS(crude rapeseed)oil)and commercial mineral oil un...This paper presents an experimental study on the creeping discharge propagating over the pressboard surface in two vegetable oils(PFAE(palm fatty acid ester)oil and CRS(crude rapeseed)oil)and commercial mineral oil under the quasi-square impulse voltage with any pulse width.The pressboard impregnated with the sample oil is immersed completely into the same oil.The tungsten needle electrode is installed in the pressboard surface with and without the counter electrode to generate a creeping discharge.The other side of pressboard has the thin copper rod as a back side electrode.A comparison of the shape and stopping length of positive and negative streamers,discharge current,emitted light signal,and temporal variation and velocity of streamer propagation is reported for all different oil-pressboard interfaces.It has been shown that the behavior of creeping streamers has unique characteristics and polarity effects,and the traveling mode and propagation velocity of streamers are greatly different depending on the type of oil.展开更多
The approach combining the dynamic caustics method with high-speed photography technology is used to study the interaction between propagating cracks and three kinds of deformity inclusions( cylinder inclusion, quadr...The approach combining the dynamic caustics method with high-speed photography technology is used to study the interaction between propagating cracks and three kinds of deformity inclusions( cylinder inclusion, quadruple inclusion and triangular inclusion) under lowvelocity impact loading. By recording the caustic spots of crack tips at different moments during the crack propagation, the variation regulations of dynamic stress intensity factors( DSIF) and crack growth velocity with respect to time are obtained. The experimental results showthat the resistance effects to crack growth are varied with different shapes of inclusions in specimens, and the quadruple inclusion's effect is more apparent. The distortion degree of caustic spots is affected by the shapes of inclusions as well, and the situation is more serious for cylinder and quadruple inclusions. The overall values of DSIFs of triangular inclusion specimen are greater than the others, and the crack growth velocities, characteristic sizes and DSIFs showprocesses of fluctuations because of the disturbance of reflection waves in specimens. The results provide an experimental basis for the analysis of strength and impact-resistance ability in structures with deformity inclusions.展开更多
This study constructs a 3 D velocity structure model of the Ludian region in the Yunnan province, southwestern China, and simulates ground motion propagation of the 2014 Ludian Ms 6.5 earthquake. It aims to construct ...This study constructs a 3 D velocity structure model of the Ludian region in the Yunnan province, southwestern China, and simulates ground motion propagation of the 2014 Ludian Ms 6.5 earthquake. It aims to construct the local velocity structure of the Ludian region in three dimensions and with high precision. The simulation, using the spectral element method, is validated by field data from the Ludian earthquake records. Thus, it demonstrates that the adopted key parameters, such as the seismic source mechanism, propagation medium and geographical features of the engineering site, are appropriated for the simulation. Meanwhile, the simulation generates the ground motion distribution of the study region with an earthquakeinduced landslide in Ludian earthquake.展开更多
Shear wave elastography(SWE)is now becoming an indispensable diagnostic tool in the routine examination of liver diseases.In particular,accuracy is required for shear wave propagation velocity measurement,which is dir...Shear wave elastography(SWE)is now becoming an indispensable diagnostic tool in the routine examination of liver diseases.In particular,accuracy is required for shear wave propagation velocity measurement,which is directly related to diagnostic accuracy.It is generally accepted that the liver shear wave propagation velocity reflects the degree of fibrosis,but there are still few reports on other factors that increase the shear wave propagation velocity.In this study,we reviewed such factors in the literature and examined their mechanisms.Current SWE measures propagation velocity based on the assumption that the medium has a homogeneous structure,uniform density,and is purely elastic.Otherwise,the measurement is subject to error.The other(confounding)factors that we routinely experience are primarily:(1)Conditions that appear to increase the viscous component;and(2)Conditions that appear to increase tissue density.Clinically,the former includes acute hepatitis,congested liver,biliary obstruction,etc,and the latter includes diffuse infiltration of malignant cells,various storage diseases,tissue necrosis,etc.In any case,it is important to evaluate SWE in the context of the entire clinical picture.展开更多
A 2D axial symmetry fluid model is applied to study the features of an atmospheric-pressure argon(Ar) plasma jet propagating into ambient nitrogen(N_(2)) driven by a pulsed voltage,emphasizing the influence of gas vel...A 2D axial symmetry fluid model is applied to study the features of an atmospheric-pressure argon(Ar) plasma jet propagating into ambient nitrogen(N_(2)) driven by a pulsed voltage,emphasizing the influence of gas velocity on the dynamic characteristics of the jet. The results show that the Ar jet exhibits a cylindrical-shaped channel and the jet channel gradually shrinks with the increase in propagation length. The jet propagation velocity varies with time. Inside the dielectric tube, the plasma jet accelerates propagation and reaches its maximum value near the nozzle. Exiting the tube, its velocity quickly decreases and when approaching the metal plane,the decrease in jet velocity slows down. The increase in gas speed results in the variation of jet spatial distribution. The electron density presents a solid structure at lower gas flow speeds,whereas an annular structure can be observed under the higher gas flow velocity in the ionization head. The jet length increases with the flow velocity. However, when the flow velocity exceeds a critical value, the increase in the rate of the plasma jet length slows down. In addition, the gas velocity effect on the generation and transport of the reactive particles is also studied and discussed.展开更多
Bused on the wave equations established by the authors, the characteristics of propagation velocities of elastic vaves in saturated soils arc analyzed and verified by ultrasonic test in laboratory and seismic survey i...Bused on the wave equations established by the authors, the characteristics of propagation velocities of elastic vaves in saturated soils arc analyzed and verified by ultrasonic test in laboratory and seismic survey in the field. The results provide theoretical basis for the determination of physical and mechanical parameters of saturated soils using propagation velocities of elastic waves. especially P-wave Velocity.展开更多
基金Innovation Project of Loudi Science and Technology Bureau(Project No.Lou Caijiaozhi(2022)No.2)。
文摘Objective:To explore the correlation between epicardial fat thickness(EFT),aortic velocity propagation(AVP),and abdominal aortic intima-media thickness(AA-IMT)in patients with subclinical hypothyroidism(SH).Additionally,to compare these indicators between SH patients and healthy individuals,providing a new theoretical basis for the clinical prevention and treatment of cardiovascular diseases.Method:Clinical data from 50 SH patients(23 males and 27 females)and 50 healthy outpatient examinees(22 males and 28 females)were analyzed.The participants were selected from January 2022 to December 2023 at Loudi Central Hospital.EFT,AVP,and AA-IMT were measured,and their correlations were analyzed.Results:SH patients had significantly higher EFT and AA-IMT levels than the control group,while their AVP was significantly lower,with these differences being statistically significant(P<0.05).Correlation analysis revealed a significant negative correlation between EFT and AVP(P<0.001),a significant positive correlation between EFT and AAO-IMT(P<0.001),and a significant negative correlation between AVP and AAO-IMT(P<0.001).Multivariate binary logistic regression analysis identified increased EFT,decreased AVP,and increased AAO-IMT as independent risk factors for SH patients.Conclusion:In SH patients,EFT and AAO-IMT are elevated,whereas AVP is reduced.EFT and AVP are significantly correlated with AAO-IMT.EFT and AAO-IMT can serve as reliable indicators for evaluating subclinical atherosclerosis in SH patients,providing a diagnostic basis for clinical practice.
基金the Hubei Province Health and Famliy Planning Scientific Research Project(No.WJ2023M011)the Department of Finance of Hubei Province(No.3890750).
文摘Objective Anthracycline chemotherapeutic agents have significant cardiotoxicity.The present study emphasized the effect of anthracycline chemotherapy drugs on left ventricular(LV)myocardial stiffness in breast cancer patients by measuring the intrinsic wave velocity propagation(IVP),and evaluating the potential clinical value of IVP in detecting early LV diastolic function impairment.Methods A total of 68 newly diagnosed breast cancer patients,who were treated with anthracycline-based chemotherapy,were analyzed.Transthoracic echocardiography was performed at baseline(T0),and after 1,2,3,4 and 8 chemotherapeutic cycles(T1,T2,T3,T4 and T5,respectively).Then,the IVP,LV strain parameters[global longitudinal strain(GLS),longitudinal peak strain rate at systole(LSRs),longitudinal peak strain rate at early diastole(LSRe),longitudinal peak strain rate at late diastole(LSRa),and the E/LSRe ratio],and conventional echocardiographic parameters were obtained and further analyzed.A relative reduction of>15%in GLS was considered a marker of early LV subclinical dysfunction.Results Compared to the T0 stage,IVP significantly increased at the T1 stage.However,there were no significant changes in GLS,LSRs,or LSRe between the T0 and T1 stages.These parameters significantly decreased from the T2 stage.LSRa started to significantly decrease at the T5 stage,and the E/LSRe ratio started to significantly increase at the T3 stage(all P<0.05).At the T0 stage,IVP(AUC=0.752,P<0.001)had a good predictive value for LV subclinical dysfunction after chemotherapy.Conclusions IVP is a potentially sensitive parameter for the early clinical assessment of anthracycline-related cardiac diastolic impairment.
基金Supported by the National Key Research and Development Program of China(No.2017YFC1405102)the National Natural Science Foundation of China(No.42006164)+1 种基金the Global Change and Air-Sea Interaction Program of China(No.GASI-02-IND-YGST2-04)the Chinese Association of Ocean Mineral Resources R&D(No.DY135-E2-4)。
文摘The Andaman Sea has been a classic study region for internal solitary waves(ISWs)for several decades,and extraordinarily large ISWs are characteristic of the Andaman Sea in the Indian Ocean.This paper presents results on the estimation of the propagation velocity of ISWs in the Andaman Sea that were tracked using 195 image pairs acquired by MODIS National Aeronautics and Space Administration(NASA)Terra/Aqua satellites between January 2014 and December 2018.A total of 562 ISWs were identified during the period,and the results of the propagation velocity distribution of ISWs in the Andaman Sea are presented.The estimated propagation velocity of ISWs agrees well with the theoretical results derived from the Korteweg-de Vries(KdV)equation using monthly climatology stratification data and local bathymetry.The ISW propagation velocity decreases as they propagate from deep to shallow water;the maximum propagation velocity of 3.27 m/s was estimated on the western side of the Nicobar Islands and minimum speed of 0.54 m/s occurred in the shallow water region of the southeastern Andaman Sea.The results show that the ISW propagation characteristics differ in the northern,central,and southern regions of the Andaman Sea.In the northern Andaman Sea,the velocity of ISWs propagating westward was greater than that of ISWs propagating eastward at the same water depth.In the central Andaman Sea,the propagation velocity of the ISWs differed over a small area at a depth of 2500 m,and the velocity of ISWs in the deep mixing layer in winter was higher than that in the shallow mixing layer in spring.Monthly variations in ISW propagation velocity were analyzed in the southern Andaman Sea,and the velocity of ISWs differed greatly in shallow water and was not significantly different in deep water.Water depth and monthly stratification play vital roles in controlling the phase speed of ISWs in the Andaman Sea.This study will provide a basis for the propagation and prediction of ISWs in the Andaman Sea.
基金National Natural Science Foundation of China(Nos.10335060,10235010)
文摘O-mode Doppler reflectometer has been successfully developed as an important diagnostic system on HL-2A. It can be used to measure the turbulence propagation in both plasma edge and confinement zone. The Doppler reflectometer system consists of two fixed frequency homodyne receivers: 15 GHz (corresponding to cutoff density of 0.3×10^19 m^-3) and 33 GHz (corresponding to cutoff density of 1.35× 10^19 m^-3). The Doppler reflectometry principle and the experimental arrangements on HL-2A are presented. Meanwhile, the experimental Doppler reflectometric spectra under different discharge conditions, with and without ECRH, were obtained. Furthermore, the turbulence propagation velocity change and the profile were also observed in different discharge conditions.
基金The National Natural Science Foundation of China under contract Nos 41776034 and 41706025the Fund of Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)under contract No.ZJW-2019-08+2 种基金the Special Project of Global Change and Air and Sea Interaction under contract No.GASI-02-SCS-YGST2-02the Guangdong Province First-Class Discipline Plan under contract Nos CYL231419012 and 231389002the Scientific Research Setup Fund of Guangdong Ocean University under contract No.101302/R18001。
文摘Using mesoscale eddy trajectory product derived from satellite altimetry data from 1993 to 2017,this study analyzes the statistical characteristics of spatiotemporal distribution of mesoscale eddy propagation velocities(C)in the South China Sea(SCS)deep basin with depths>1000 m.Climatologically,the zonal propagation velocities(cx)are westwards in the whole basin,and the meridional velocities(cy)are southwards in the northwestern basin,and northwards in the southeastern basin.The variation of cy with longitude is consistent with that of the background meridional currents with correlation coefficient R2 of 0.96,while the variation of cx is related both to the background zonal currents andβeffect.The propagation velocities characterize significant seasonality with the minimum magnitude occurring in summer and the maximum in winter for cx and C.Interannually,larger values of cx and cy mostly occurred in La Ni?a years in the negative phase of the Pacific Decadal Oscillation(PDO).Mesoscale eddies move fast at the beginning and end of their life span,i.e.,at their growth and dissipation periods,and slowly during their stable"midlife"period.This trend is negatively correlated with the rotating tangential velocity with R2 of–0.93.Eddies with extreme propagation velocities are defined,which are slower(faster)than 1.5 cm/s(15.4 cm/s)and take 1.5%(1.9%)of the total eddies.The extremely slow-moving(fastmoving)eddies tend to appear in the middle(on the edge)of the basin,and mostly occur in summer(winter).The mechanism analysis reveals that the spatiotemporal distributions of the propagation velocities of mesoscale eddies in the SCS are modulated by the basin-scale background circulation.
基金Major Research and Development Project of Shanxi Province(No.201603D121012)
文摘In coal industry,gas explosion accidents emerge constantly,causing enormous casualties and poorer material property.In the course of studying gas exploding mechanism,the propagation velocity of the flame wave front is one of the most important factors.A set of flame velocity measuring system was designed according to the horizontal pipelined experimental facility of North University of China to study the effects of the quantity and blockage ratio of the circle ring obstacle on the flame propagation velocity in the inclosed tube.The research results show that the obstacle has obviously accelerating effect on the flame wave of gas explosion With the increase of quantity and blockage ratio of the obstacle,the flame accelerating effect becomes more obvious and the flame accelerating persistence is intenser,of which the effect of the quantity of the obstacle on the flame accelerating persistence is larger,but the effect of the blockage ratio of the obstacle on the flame accelerating persistenceis not obvious.
文摘An experimental-numerical method for measuring dynamic crack propagatingvelocities under stress wave loading is established in this paper. The experiments of thethree-point bend specimen are done on the improved Hopkinson bar. Deflection of loading point,dynamic load and instantaneous crack length are measured, then crack propagating velocities arecalculated. Experiments on 40Cr steel show that the results given by this method have a goodagreement with that obtained by the resistance fracture gage method. Therefore this method isfeasible for measuring crack propagating velocities under high loading rate and will have wideapplication.
文摘This paper presents a self-contained description on the configuration of propagator method(PM)to calculate the electron velocity distribution function(EVDF) of electron swarms in gases under DC electric and magnetic fields crossed at a right angle. Velocity space is divided into cells with respect to three polar coordinates v,θ and f. The number of electrons in each cell is stored in three-dimensional arrays. The changes of electron velocity due to acceleration by the electric and magnetic fields and scattering by gas molecules are treated as intercellular electron transfers on the basis of the Boltzmann equation and are represented using operators called the propagators or Green’s functions. The collision propagator, assuming isotropic scattering, is basically unchanged from conventional PMs performed under electric fields without magnetic fields. On the other hand, the acceleration propagator is customized for rotational acceleration under the action of the Lorentz force. The acceleration propagator specific to the present cell configuration is analytically derived. The mean electron energy and average electron velocity vector in a model gas and SF6 were derived from the EVDF as a demonstration of the PM under the Hall deflection and they were in a fine agreement with those obtained by Monte Carlo simulations. A strategy for fast relaxation is discussed, and extension of the PM for the EVDF under AC electric and DC/AC magnetic fields is outlined as well.
基金supported by the National Natural Science Foundation of China(Grant No.11804002)the University Science Research Project of Anhui Province,China(Grant Nos.KJ2019A0792 and KJ2019A0797)the Anhui Jianzhu University Research Project(Grant No.2018QD06)。
文摘Nearfield acoustic holography in a moving medium is a technique which is typically suitable for sound sources identification in a flow.In the process of sound field reconstruction,sound pressure is usually used as the input,but it may contain considerable background noise due to the interactions between microphones and flow moving at a high velocity.To avoid this problem,particle velocity is an alternative input,which can be obtained by using laser Doppler velocimetry in a non-intrusive way.However,there is a singular problem in the conventional propagator relating the particle velocity to the pressure,and it could lead to significant errors or even false results.In view of this,in this paper,nonsingular propagators are deduced to realize accurate reconstruction in both cases that the hologram is parallel to and perpendicular to the flow direction.The advantages of the proposed method are analyzed,and simulations are conducted to verify the validation.The results show that the method can overcome the singular problem effectively,and the reconstruction errors are at a low level for different flow velocities,frequencies,and signal-to-noise ratios.
文摘The propagator for a time-dependent damped harmonic oscillator with a force quadratic in velocity is obtained by making a specific coordinate transformation and by using the method of time-dependent invariant.
文摘This paper presents an experimental study on the creeping discharge propagating over the pressboard surface in two vegetable oils(PFAE(palm fatty acid ester)oil and CRS(crude rapeseed)oil)and commercial mineral oil under the quasi-square impulse voltage with any pulse width.The pressboard impregnated with the sample oil is immersed completely into the same oil.The tungsten needle electrode is installed in the pressboard surface with and without the counter electrode to generate a creeping discharge.The other side of pressboard has the thin copper rod as a back side electrode.A comparison of the shape and stopping length of positive and negative streamers,discharge current,emitted light signal,and temporal variation and velocity of streamer propagation is reported for all different oil-pressboard interfaces.It has been shown that the behavior of creeping streamers has unique characteristics and polarity effects,and the traveling mode and propagation velocity of streamers are greatly different depending on the type of oil.
基金The National Natural Science Foundation of China(No.51374210,51134025)the 111 Project(No.B14006)
文摘The approach combining the dynamic caustics method with high-speed photography technology is used to study the interaction between propagating cracks and three kinds of deformity inclusions( cylinder inclusion, quadruple inclusion and triangular inclusion) under lowvelocity impact loading. By recording the caustic spots of crack tips at different moments during the crack propagation, the variation regulations of dynamic stress intensity factors( DSIF) and crack growth velocity with respect to time are obtained. The experimental results showthat the resistance effects to crack growth are varied with different shapes of inclusions in specimens, and the quadruple inclusion's effect is more apparent. The distortion degree of caustic spots is affected by the shapes of inclusions as well, and the situation is more serious for cylinder and quadruple inclusions. The overall values of DSIFs of triangular inclusion specimen are greater than the others, and the crack growth velocities, characteristic sizes and DSIFs showprocesses of fluctuations because of the disturbance of reflection waves in specimens. The results provide an experimental basis for the analysis of strength and impact-resistance ability in structures with deformity inclusions.
基金National Key Technology R&D Program of China under Grant No.2016YFB0201001the National Natural Science Foundation of China under Grant Nos.41274106,51639006,40974063 and 51479098
文摘This study constructs a 3 D velocity structure model of the Ludian region in the Yunnan province, southwestern China, and simulates ground motion propagation of the 2014 Ludian Ms 6.5 earthquake. It aims to construct the local velocity structure of the Ludian region in three dimensions and with high precision. The simulation, using the spectral element method, is validated by field data from the Ludian earthquake records. Thus, it demonstrates that the adopted key parameters, such as the seismic source mechanism, propagation medium and geographical features of the engineering site, are appropriated for the simulation. Meanwhile, the simulation generates the ground motion distribution of the study region with an earthquakeinduced landslide in Ludian earthquake.
文摘Shear wave elastography(SWE)is now becoming an indispensable diagnostic tool in the routine examination of liver diseases.In particular,accuracy is required for shear wave propagation velocity measurement,which is directly related to diagnostic accuracy.It is generally accepted that the liver shear wave propagation velocity reflects the degree of fibrosis,but there are still few reports on other factors that increase the shear wave propagation velocity.In this study,we reviewed such factors in the literature and examined their mechanisms.Current SWE measures propagation velocity based on the assumption that the medium has a homogeneous structure,uniform density,and is purely elastic.Otherwise,the measurement is subject to error.The other(confounding)factors that we routinely experience are primarily:(1)Conditions that appear to increase the viscous component;and(2)Conditions that appear to increase tissue density.Clinically,the former includes acute hepatitis,congested liver,biliary obstruction,etc,and the latter includes diffuse infiltration of malignant cells,various storage diseases,tissue necrosis,etc.In any case,it is important to evaluate SWE in the context of the entire clinical picture.
基金supported by National Natural Science Foundation of China(Nos.11775043,11675095 and 11505020)the Fundamental Research Funds for the Central Universities(No.DUT18LK31)。
文摘A 2D axial symmetry fluid model is applied to study the features of an atmospheric-pressure argon(Ar) plasma jet propagating into ambient nitrogen(N_(2)) driven by a pulsed voltage,emphasizing the influence of gas velocity on the dynamic characteristics of the jet. The results show that the Ar jet exhibits a cylindrical-shaped channel and the jet channel gradually shrinks with the increase in propagation length. The jet propagation velocity varies with time. Inside the dielectric tube, the plasma jet accelerates propagation and reaches its maximum value near the nozzle. Exiting the tube, its velocity quickly decreases and when approaching the metal plane,the decrease in jet velocity slows down. The increase in gas speed results in the variation of jet spatial distribution. The electron density presents a solid structure at lower gas flow speeds,whereas an annular structure can be observed under the higher gas flow velocity in the ionization head. The jet length increases with the flow velocity. However, when the flow velocity exceeds a critical value, the increase in the rate of the plasma jet length slows down. In addition, the gas velocity effect on the generation and transport of the reactive particles is also studied and discussed.
文摘Bused on the wave equations established by the authors, the characteristics of propagation velocities of elastic vaves in saturated soils arc analyzed and verified by ultrasonic test in laboratory and seismic survey in the field. The results provide theoretical basis for the determination of physical and mechanical parameters of saturated soils using propagation velocities of elastic waves. especially P-wave Velocity.