期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation of hydrophobic flat sheet membranes from PVDF-HFP copolymer for enhancing the oxygen permeance in nitrogen/oxygen gas mixture 被引量:1
1
作者 Bahador Akbari Asghar Lashanizadegan +1 位作者 Parviz Darvishi Abdolrasoul Pouranfard 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第6期1566-1581,共16页
In this study, poly(vinilydene fluoride-co-hexafluoropropylene)(PVDF-HFP) was used for preparation of hydrophobic membranes using non-solvent induced phase inversion(NIPS) technique. PVDF-HFP copolymer with concentrat... In this study, poly(vinilydene fluoride-co-hexafluoropropylene)(PVDF-HFP) was used for preparation of hydrophobic membranes using non-solvent induced phase inversion(NIPS) technique. PVDF-HFP copolymer with concentrations of 10 wt% and 12 wt% was prepared to investigate the effect of polymer concentration on pore structure,morphology, hydrophobicity and performance of prepared membranes. Besides, the use of two coagulation baths with the effects of parameters such as coagulant time, polymer type and concentration, and the amount of nonsolvent were studied. The performance of prepared membranes was evaluated based on the permeability and selectivity of oxygen and nitrogen from a gas mixture of nitrogen/oxygen under operating conditions of feed flow rate(1–5 L·min-1), inlet pressure to membrane module(0.1–0.5 MPa) and temperatures between 25 and 45 °C. The results showed that the use of two coagulation baths with different compositions of distillated water and isopropanol,coagulant time, polymer type and concentration, and the amount of non-solvent additive have the most effect on pore structure, morphology, thickness, roughness and crystallinity of fabricated membranes. Porosity ranges for the three fabricated membranes were determined, where the maximum porosity was 73.889% and the minimum value was 56.837%. Also, the maximum and minimum average thicknesses of membrane were 320.85 μm and115 μm. Besides, the values of 4.7504 × 10-7 mol· m-2· s-1· Pa-1, 0.525 and 902.126 nm were achieved for maximum oxygen permeance, O2/N2 selectivity and roughness, respectively. 展开更多
关键词 Oxygen-enriched air Hydrophobic flat sheet membrane PVDF-HFP copolymer Enhancing oxygen permeance Pore structure
下载PDF
Preparation and characterization of PVDF-PFSA flat sheet ultrafiltration membranes 被引量:3
2
作者 Jiquan MA Junhong ZHAO +1 位作者 Zhongbin REN Lei LI 《Frontiers of Chemical Science and Engineering》 CAS CSCD 2012年第3期301-310,共10页
High performance polyvinylidene fluoride (PVDF) flat sheet ultrafiltration (UF) membranes have been prepared by an immersion precipitation phase inversion method using perfluorosulfonic acid (PFSA) as a pore for... High performance polyvinylidene fluoride (PVDF) flat sheet ultrafiltration (UF) membranes have been prepared by an immersion precipitation phase inversion method using perfluorosulfonic acid (PFSA) as a pore former and as a hydrophilic component of the membranes and polyethylene glycol (Mw = 400) (PEG400) as a pore forming agent. The effects of the presence of PEG and the concentration of the PFSA on the phase separation of the casting solutions and on the morphologies and performance of UF membranes including their porosity, water flux, rejection of bovine serum albumin (BSA) protein, and anti-fouling property were investigated. Phase diagrams, viscosities and the phase separations upon exposure to water vapor showed that both PEG400 and PFSA promoted demixing of the casting solution. Scanning electron microscopy measurements showed that the PVDF-PFSA blend membranes had more macropores and finger-like structures than the native PVDF membranes. The PVDF-PFSA membrane (5 wt-% PEG400 + 5 wt-% PFSA) had a pure water flux of 141.7L/m2.h, a BSA rejection of 90.1% and a relative pure water flux reduction (RFR) of 15.28%. These properties were greatly superior to those of the native PVDF membrane (pure water flux of 5.6 L/m2. h, BSA rejection of 96.3% and RFR of 42.86%). 展开更多
关键词 polyvinylidene fluoride perfluorosulfonic acid polyethylene glycol flat sheet membrane ULTRAFILTRATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部