期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The electronic structure of Nb_3Al/Nb_3Sn, a new test case for flat/steep band model of superconductivity
1
作者 Yanlong Ding Shuiquan Deng Yong Zhao 《Journal of Modern Transportation》 2014年第3期183-186,共4页
In this work, we choose Nb3Al/Nb3Sn as a new test case for flat/steep band model of superconductivity. Based on the density functional theory in the generalized gradient approximation, the electronic structure of Nb3A... In this work, we choose Nb3Al/Nb3Sn as a new test case for flat/steep band model of superconductivity. Based on the density functional theory in the generalized gradient approximation, the electronic structure of Nb3Al/ Nb3Sn has been studied. The obtained results agree well with those of the earlier studies and show clearly fiat bands around the Fermi level. The steep bands as characterized in this work locate around the M point in the first Brillouin zone. The obtained results reveal that Nb3Al/Nb3Sn fits more to the "Flat/steep" band model than to the van-Hove singularity scenario. The fiat/steep band condition for superconductivity implies a different thermodynamic behavior of superconductors other than that predicted from the conventional BCS theory. This observation sets up an indicator for selecting a suitable superconductor when its large-scale industrial use is needed, for example, in superconducting maglev system or ITER project. 展开更多
关键词 Nb3Al/Nb3Sn - Electronic structure - flat/ steep band model FIRST-PRINCIPLE
下载PDF
A new local resonance metamaterial for flat and cylindrical structures depended on elastic chiral spiral beams
2
作者 LIU Jing ZENG Tan +2 位作者 NI HengTai HOU YingYing PAN Guang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第11期3597-3611,共15页
In practical engineering structures,complex low-frequency vibrations are often encountered.However,most reported elastic metamaterials are designed for high-frequency ranges or rely on substantial additional mass to c... In practical engineering structures,complex low-frequency vibrations are often encountered.However,most reported elastic metamaterials are designed for high-frequency ranges or rely on substantial additional mass to control low-frequency vibrations,making them difficult to apply in real-world engineering scenarios.To address this limitation,we propose a homogeneous locally resonance metamaterial with tunable low-frequency bandgaps.This design overcomes the challenges associated with conventional local resonators,which are often large and heavy,making them impractical for engineering applications.By integrating resonator structures composed of elastic chiral spiral beams and mass blocks onto the supporting structure,we achieve lowfrequency vibration control within limited spaces,broadband absorption with gradient parameter units,and vibration control under different curvatures.The effectiveness of the proposed design is validated through comparative computational methods,dispersion curve calculations,frequency response simulations,and experimental tests.This study proposes a novel LRM structure with a full bandgap from 96.9 to 124 Hz.The transmittance is negative in most of the band gap range,which has been verified through numerical and experimental results.This approach effectively meets the complex low-frequency vibration control requirements of various curved structures in engineering applications,providing a viable solution for low-frequency vibration control of structures such as flat and cylindrical shells. 展开更多
关键词 local resonance metamaterial chiral spiral elastic beams flat structures cylindrical structures low-frequency vibrations
原文传递
DecPDEVS: New Simulation Algorithms to Improve Message Handling in PDEVS
3
作者 Paul-Antoine Bisgambiglia Paul Bisgambiglia 《Open Journal of Modelling and Simulation》 2021年第2期172-197,共26页
This work proposes a new simulation algorithm to improve message handling in discrete event formalism. We present an approach to minimize simulation execution time. To do this, we propose to reduce the number of excha... This work proposes a new simulation algorithm to improve message handling in discrete event formalism. We present an approach to minimize simulation execution time. To do this, we propose to reduce the number of exchanged messages between Parallel DEVS (PDEVS) components (simulators and coordinators). We propose three changes from PDEVS: direct coupling, flat structure and local schedule. The goal is the decentralisation of a number of tasks to make the simulators more autonomous and simplify the coordinators to achieve a greater speedup. We propose to compare the simulation results of several models to demonstrate the benefits of our approach. 展开更多
关键词 SIMULATION PDEVS Formalism Direct Coupling Decentralised Schedule flat structure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部