Winter jujube orchard nitrogen (N) management aims at increasing N reserves to meet the tree's growth requirements. Fertilization strategies should maximize the efficiency of fertilizers, including the choice of th...Winter jujube orchard nitrogen (N) management aims at increasing N reserves to meet the tree's growth requirements. Fertilization strategies should maximize the efficiency of fertilizers, including the choice of the optimal timing of N supply. ^15N-urea was applied to winter jujubes on Jinsixiaozao jujubes rootstock to evaluate the effect of application timing on Nstorage and remobilization in mature trees in pot culture. The treatments consisted of ground application before budding (BB), during fruit core-hardening stage (FCH), and fruit rapid-swelling stage (FRS). Nitrogen-use efficiency of treatments were significantly different, which were 2.42% (BB), 9.77% (FCH), and 9.01% (FRS) in the dormant and 5.20% (BB), 16.16% (FCH), and 10.30% (FRS) in the following full-bloom. N supply in the pre-harvest helped to increase N-reserves of trees and then translocate to the new growth organs the following year. The largest amount of ^15N was detected in the roots and trunks. In all the treatments, the partition rates were highest in coarse roots, which were 30.43% (BB), 38.61% (FCH), and 40.62% (FRS), respectively. ^15N stored in roots and trunks was used by jujube trees to sustain new growth in the following full-bloom. ^15N applied before budding resulted in lower Ndff% in perennial organs (trunks and coarse roots) sampled in the following full-bloom, but fine roots had highest Ndff% (1.28%). Other organs recovered similar amount of Ndff%. In contrast, FCH and FRS treatments led to higher Ndff% (4.01-5.15%) in the new growth organs (new growth branches, deciduous spurs, leaves and flowers), but lower Ndff% in perennial branches (1.49-2.89%). With the delay of ^15N-urea application time, ^15N increased the partitioning to roots. FCH treatment increased N-storage in perennial organ during winter, which should be remobilized to sustain new growth the following spring.展开更多
[Objectives]To study and compare the processing methods of Ziziphus jujuba Mill.[Methods]Z.jujuba was processed by seven methods:cleaning,yellowish frying,burnt frying,carbonized frying,moistening by hot sand,steaming...[Objectives]To study and compare the processing methods of Ziziphus jujuba Mill.[Methods]Z.jujuba was processed by seven methods:cleaning,yellowish frying,burnt frying,carbonized frying,moistening by hot sand,steaming,and boiling.Ultraviolet-visible spectrophotometry was used to determine the content of total flavonoids in each processed Z.jujuba.[Results]The content of total flavonoids measured by various processing methods was different.The content of total flavonoids in the processed Z.jujuba by moistening by hot sand was relatively high and the absorption peak spectrum was almost the same as that of the cleaned processed Z.jujuba and the rutin reference substance.[Conclusions]The moistening by hot sand is the optimal method for processing of Z.jujuba.展开更多
Leaves of Ziziphus jujuba Mill.(Z. jujuba) were used as a folk medicine to treat children suffering from typhoid fever, furuncle and ecthyma in China. The present study was to establish a high performance liquid chr...Leaves of Ziziphus jujuba Mill.(Z. jujuba) were used as a folk medicine to treat children suffering from typhoid fever, furuncle and ecthyma in China. The present study was to establish a high performance liquid chroma- tography-diode array detector(HPLC-DAD) method for quality control of Z. jujuba leaves. The validated method was applied to the simultaneous characterization and quantification of sixteen main constituents in thirty samples, which comprised the whole life stage of Z. ]ujuba leaves from six cultivars in Yulin, Shannxi Province, China. HPLC fin- gerprint file of Z. jujuba leaves was set up and the results indicate that the major constituents of Z. jujuba leaves are (-)-catechin(1), quercetin-3-O-robinobioside(3), rutin(4) and quercetin-3-O-a-L-arabinosyl-(1---~2)-a-L-rhamnoside(6) with the total contents of the nine flavonoids in respective batch ranging from 18.52 mg/g to 39.51 mg/g. In addition, the contents of compounds depend on both the season and the cultivar. During ripening of Z. jujuba leaves, flavo- noids of all the cultivars present a similar trend: initially decrease from 25th, Jun. to 5th, Aug., 2015, and then in- crease for a period of time, finally slightly fluctuate on 5th Oct. The highest contents of total flavonoids were regis- tered on 25th Jun., 2015. Different cultivars have 50%--90% variation on the content for the three classes of com- pounds. Taken together, the results demonstrate that Z. jujuba leaves have great potential to be a new health-promoting resource based on flavonoids and the best sampling time of them is in June.展开更多
为了探讨枣与酸枣资源的遗传多样性以及两者的亲缘关系,采用7对 SSR 引物,对16份枣品种(系)和17份酸枣的遗传多样性进行分析。结果表明:16份枣样品共扩增出56个等位基因,有效等位基因数( Ne)为3.798~10.000,平均为6.953,Shan...为了探讨枣与酸枣资源的遗传多样性以及两者的亲缘关系,采用7对 SSR 引物,对16份枣品种(系)和17份酸枣的遗传多样性进行分析。结果表明:16份枣样品共扩增出56个等位基因,有效等位基因数( Ne)为3.798~10.000,平均为6.953,Shannon′s信息指数(I)为1.984,期望杂合度(He)为0.837;17份酸枣样品扩增后共检测出73个等位基因,等位基因的有效数目(Ne)为3.273~11.840,平均为7.398,Shannon′s信息指数(I)为2.105,期望杂合度(He)为0.843;枣和酸枣的遗传多样性都很丰富,酸枣的遗传多样性水平高于枣;GenAlEx分析得出,枣和酸枣居群种间遗传分化系数(Fst)为0.055,居群种间基因流(Nm)平均值为4.295,说明居群间基因交流比较频繁。NTSYSpc 聚类分析表明,SSR分子标记可以将枣和酸枣划分为枣类、酸枣类和过渡类3个类群。展开更多
采用盆栽称量法研究了对照、中度和重度干旱(土壤相对含水量分别为75%、55%和35%)条件下1年生酸枣〔Ziziphus jujuba Mill.var.spinosa(Bunge)Hu ex H.F.Chow〕幼苗叶片中黄酮类成分含量及一些生长和生理指标的变化,并讨论了酸枣适应干...采用盆栽称量法研究了对照、中度和重度干旱(土壤相对含水量分别为75%、55%和35%)条件下1年生酸枣〔Ziziphus jujuba Mill.var.spinosa(Bunge)Hu ex H.F.Chow〕幼苗叶片中黄酮类成分含量及一些生长和生理指标的变化,并讨论了酸枣适应干旱过程中黄酮类成分的作用。结果表明:在中度和重度干旱条件下酸枣叶片苯丙氨酸解氨酶(PAL)活性均高于对照,但经重度干旱处理后复水第7天PAL活性与对照无显著差异。与对照相比,中度干旱条件下叶片槲皮素含量基本无变化,总黄酮和芦丁含量分别显著或极显著增加,丙二醛和可溶性蛋白质含量无显著变化;与中度干旱条件相比,重度干旱条件下叶片总黄酮、芦丁和槲皮素含量显著或极显著下降,丙二醛含量不显著增加,可溶性蛋白质含量显著降低;与对照相比,重度干旱条件下总黄酮含量无明显变化,芦丁和丙二醛含量极显著或显著增加,槲皮素和可溶性蛋白质含量显著下降;复水第7天,总黄酮、芦丁和槲皮素含量均显著或极显著高于复水前,且总黄酮和芦丁含量显著高于对照,槲皮素含量与对照无显著差异;复水第1天至第4天,丙二醛含量呈先降后增再降的趋势、可溶性蛋白质含量则呈先降低后逐渐增加的趋势,其中复水第1天丙二醛含量显著高于复水前、可溶性蛋白质含量显著低于复水前。在中度或重度干旱胁迫后酸枣枝条长度均极显著小于对照,且随土壤相对含水量的降低枝条长度减小;叶片相对含水量也表现出随土壤相对含水量的降低逐渐减小的趋势,但差异不显著。研究结果提示:适宜的干旱胁迫可促进酸枣叶片黄酮类代谢,但在不同的干旱胁迫条件下,黄酮类代谢在酸枣抗旱过程中具有不同的作用。展开更多
文摘Winter jujube orchard nitrogen (N) management aims at increasing N reserves to meet the tree's growth requirements. Fertilization strategies should maximize the efficiency of fertilizers, including the choice of the optimal timing of N supply. ^15N-urea was applied to winter jujubes on Jinsixiaozao jujubes rootstock to evaluate the effect of application timing on Nstorage and remobilization in mature trees in pot culture. The treatments consisted of ground application before budding (BB), during fruit core-hardening stage (FCH), and fruit rapid-swelling stage (FRS). Nitrogen-use efficiency of treatments were significantly different, which were 2.42% (BB), 9.77% (FCH), and 9.01% (FRS) in the dormant and 5.20% (BB), 16.16% (FCH), and 10.30% (FRS) in the following full-bloom. N supply in the pre-harvest helped to increase N-reserves of trees and then translocate to the new growth organs the following year. The largest amount of ^15N was detected in the roots and trunks. In all the treatments, the partition rates were highest in coarse roots, which were 30.43% (BB), 38.61% (FCH), and 40.62% (FRS), respectively. ^15N stored in roots and trunks was used by jujube trees to sustain new growth in the following full-bloom. ^15N applied before budding resulted in lower Ndff% in perennial organs (trunks and coarse roots) sampled in the following full-bloom, but fine roots had highest Ndff% (1.28%). Other organs recovered similar amount of Ndff%. In contrast, FCH and FRS treatments led to higher Ndff% (4.01-5.15%) in the new growth organs (new growth branches, deciduous spurs, leaves and flowers), but lower Ndff% in perennial branches (1.49-2.89%). With the delay of ^15N-urea application time, ^15N increased the partitioning to roots. FCH treatment increased N-storage in perennial organ during winter, which should be remobilized to sustain new growth the following spring.
基金Supported by Scientific Research Foundation of Yunnan Provincial Department of Education(2018JS719).
文摘[Objectives]To study and compare the processing methods of Ziziphus jujuba Mill.[Methods]Z.jujuba was processed by seven methods:cleaning,yellowish frying,burnt frying,carbonized frying,moistening by hot sand,steaming,and boiling.Ultraviolet-visible spectrophotometry was used to determine the content of total flavonoids in each processed Z.jujuba.[Results]The content of total flavonoids measured by various processing methods was different.The content of total flavonoids in the processed Z.jujuba by moistening by hot sand was relatively high and the absorption peak spectrum was almost the same as that of the cleaned processed Z.jujuba and the rutin reference substance.[Conclusions]The moistening by hot sand is the optimal method for processing of Z.jujuba.
文摘Leaves of Ziziphus jujuba Mill.(Z. jujuba) were used as a folk medicine to treat children suffering from typhoid fever, furuncle and ecthyma in China. The present study was to establish a high performance liquid chroma- tography-diode array detector(HPLC-DAD) method for quality control of Z. jujuba leaves. The validated method was applied to the simultaneous characterization and quantification of sixteen main constituents in thirty samples, which comprised the whole life stage of Z. ]ujuba leaves from six cultivars in Yulin, Shannxi Province, China. HPLC fin- gerprint file of Z. jujuba leaves was set up and the results indicate that the major constituents of Z. jujuba leaves are (-)-catechin(1), quercetin-3-O-robinobioside(3), rutin(4) and quercetin-3-O-a-L-arabinosyl-(1---~2)-a-L-rhamnoside(6) with the total contents of the nine flavonoids in respective batch ranging from 18.52 mg/g to 39.51 mg/g. In addition, the contents of compounds depend on both the season and the cultivar. During ripening of Z. jujuba leaves, flavo- noids of all the cultivars present a similar trend: initially decrease from 25th, Jun. to 5th, Aug., 2015, and then in- crease for a period of time, finally slightly fluctuate on 5th Oct. The highest contents of total flavonoids were regis- tered on 25th Jun., 2015. Different cultivars have 50%--90% variation on the content for the three classes of com- pounds. Taken together, the results demonstrate that Z. jujuba leaves have great potential to be a new health-promoting resource based on flavonoids and the best sampling time of them is in June.
文摘为了探讨枣与酸枣资源的遗传多样性以及两者的亲缘关系,采用7对 SSR 引物,对16份枣品种(系)和17份酸枣的遗传多样性进行分析。结果表明:16份枣样品共扩增出56个等位基因,有效等位基因数( Ne)为3.798~10.000,平均为6.953,Shannon′s信息指数(I)为1.984,期望杂合度(He)为0.837;17份酸枣样品扩增后共检测出73个等位基因,等位基因的有效数目(Ne)为3.273~11.840,平均为7.398,Shannon′s信息指数(I)为2.105,期望杂合度(He)为0.843;枣和酸枣的遗传多样性都很丰富,酸枣的遗传多样性水平高于枣;GenAlEx分析得出,枣和酸枣居群种间遗传分化系数(Fst)为0.055,居群种间基因流(Nm)平均值为4.295,说明居群间基因交流比较频繁。NTSYSpc 聚类分析表明,SSR分子标记可以将枣和酸枣划分为枣类、酸枣类和过渡类3个类群。
文摘采用盆栽称量法研究了对照、中度和重度干旱(土壤相对含水量分别为75%、55%和35%)条件下1年生酸枣〔Ziziphus jujuba Mill.var.spinosa(Bunge)Hu ex H.F.Chow〕幼苗叶片中黄酮类成分含量及一些生长和生理指标的变化,并讨论了酸枣适应干旱过程中黄酮类成分的作用。结果表明:在中度和重度干旱条件下酸枣叶片苯丙氨酸解氨酶(PAL)活性均高于对照,但经重度干旱处理后复水第7天PAL活性与对照无显著差异。与对照相比,中度干旱条件下叶片槲皮素含量基本无变化,总黄酮和芦丁含量分别显著或极显著增加,丙二醛和可溶性蛋白质含量无显著变化;与中度干旱条件相比,重度干旱条件下叶片总黄酮、芦丁和槲皮素含量显著或极显著下降,丙二醛含量不显著增加,可溶性蛋白质含量显著降低;与对照相比,重度干旱条件下总黄酮含量无明显变化,芦丁和丙二醛含量极显著或显著增加,槲皮素和可溶性蛋白质含量显著下降;复水第7天,总黄酮、芦丁和槲皮素含量均显著或极显著高于复水前,且总黄酮和芦丁含量显著高于对照,槲皮素含量与对照无显著差异;复水第1天至第4天,丙二醛含量呈先降后增再降的趋势、可溶性蛋白质含量则呈先降低后逐渐增加的趋势,其中复水第1天丙二醛含量显著高于复水前、可溶性蛋白质含量显著低于复水前。在中度或重度干旱胁迫后酸枣枝条长度均极显著小于对照,且随土壤相对含水量的降低枝条长度减小;叶片相对含水量也表现出随土壤相对含水量的降低逐渐减小的趋势,但差异不显著。研究结果提示:适宜的干旱胁迫可促进酸枣叶片黄酮类代谢,但在不同的干旱胁迫条件下,黄酮类代谢在酸枣抗旱过程中具有不同的作用。