期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Integrative analysis of the metabolome and transcriptome reveals seed germination mechanism in Punica granatum L. 被引量:3
1
作者 FU Fang-fang PENG Ying-shu +2 位作者 WANG Gui-bin Yousry A.EL-KASSABY CAO Fu-liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第1期132-146,共15页
We conducted an integrative system biology of metabolome and transcriptome profile analyses during pomegranate(Punica granatum L.) seed germination and utilized a weighted gene co-expression network analysis(WGCNA) to... We conducted an integrative system biology of metabolome and transcriptome profile analyses during pomegranate(Punica granatum L.) seed germination and utilized a weighted gene co-expression network analysis(WGCNA) to describe the functionality and complexity of the physiological and morphogenetic processes as well as gene expression and metabolic differences during seed germination stages. In total, 489 metabolites were detected, including 40 differentially accumulated metabolites. The transcriptomic analysis showed the expression of 6 984 genes changed significantly throughout the whole germination process. Using WGCNA, we identified modules related to the various seed germination stages and hub genes. In the initial imbibition stage(stage 1), the pivotal genes involved in RNA transduction and the glycolytic pathway were most active, while in the sprouting stage(stage 4), the pivotal genes were involved in multiple metabolic pathways. In terms of secondary metabolic pathways, we found flavonoid 4-reductase genes of anthocyanin biosynthesis pathway are most significantly affected during pomegranate seed germination, while the flavonol synthase gene was mainly involved in the regulation of isoflavonoid biosynthesis. 展开更多
关键词 seed germination stages weighted gene co-expression network analysis(WGCNA) METABOLOME TRANSCRIPTOME flavonoid pathway
下载PDF
BnbHLH92a negatively regulates anthocyanin and proanthocyanidin biosynthesis in Brassica napus
2
作者 Ran Hu Meichen Zhu +13 位作者 Si Chen Chengxiang Li Qianwei Zhang Lei Gao Xueqin Liu Shulin Shen Fuyou Fu Xinfu Xu Ying Liang Liezhao Liu Kun Lu Hao Yu Jiana Li Cunmin Qu 《The Crop Journal》 SCIE CSCD 2023年第2期374-385,共12页
Yellow seed trait is a desirable characteristic with potential for increasing seed quality and commercial value in rapeseed,and anthocyanin and proanthocyanidins(PAs)are major seed-coat pigments.Few transcription fact... Yellow seed trait is a desirable characteristic with potential for increasing seed quality and commercial value in rapeseed,and anthocyanin and proanthocyanidins(PAs)are major seed-coat pigments.Few transcription factors involved in the regulation of anthocyanin and PAs biosynthesis have been characterized in rapeseed.In this study,we identified a transcription factor gene BnbHLH92a(BnaA06T0441000ZS)in rapeseed.Overexpressing BnbHLH92a both in Arabidopsis and in rapeseed reduced levels of anthocyanin and PAs.Correspondingly,the expression profiles of anthocyanin and PA biosynthesis genes(TT3,BAN,TT8,TT18,and TTG1)were shown by quantitative real-time PCR to be inhibited in BnbHLH92a-overexpressing Arabidopsis seeds,indicating that BnbHLH92a represses the anthocyanin and PA biosynthesis pathway in Arabidopsis.BnbHLH92a physically interacts with the BnTTG1 protein and represses the biosynthesis of anthocyanins and PAs in rapeseed.BnbHLH92a also binds directly to the BnTT18 promoter and represses its expression.These results suggest that BnbHLH92a is a novel upstream regulator of flavonoid biosynthesis in B.napus. 展开更多
关键词 Brassica napus L BnbHLH92a ANTHOCYANIN PROANTHOCYANIDINS flavonoid pathway
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部