A new way of acoustic wave imaging was investigated. By using the Green function theory a system of integral equations,which linked wave number perturbation function with wave field, was firstly deduced. By taking var...A new way of acoustic wave imaging was investigated. By using the Green function theory a system of integral equations,which linked wave number perturbation function with wave field, was firstly deduced. By taking variation on these integral equations an inversion equation,which reflected the relation between the little variation of wave number perturbation function and that of scattering field, was further obtained. Finally, the perturbation functions of some identical targets were reconstructed, and some properties of the novel method including converging speed, inversion accuracy and the abilities to resist random noise and identify complex targets were discussed. Results of numerical simulation show that the method based on the variation principle has great theoretical and applicable value to quantitative nondestructive evaluation.展开更多
文摘A new way of acoustic wave imaging was investigated. By using the Green function theory a system of integral equations,which linked wave number perturbation function with wave field, was firstly deduced. By taking variation on these integral equations an inversion equation,which reflected the relation between the little variation of wave number perturbation function and that of scattering field, was further obtained. Finally, the perturbation functions of some identical targets were reconstructed, and some properties of the novel method including converging speed, inversion accuracy and the abilities to resist random noise and identify complex targets were discussed. Results of numerical simulation show that the method based on the variation principle has great theoretical and applicable value to quantitative nondestructive evaluation.