A generalized flexibility–based objective function utilized for structure damage identification is constructed for solving the constrained nonlinear least squares optimized problem. To begin with, the generalized fle...A generalized flexibility–based objective function utilized for structure damage identification is constructed for solving the constrained nonlinear least squares optimized problem. To begin with, the generalized flexibility matrix (GFM) proposed to solve the damage identification problem is recalled and a modal expansion method is introduced. Next, the objective function for iterative optimization process based on the GFM is formulated, and the Trust-Region algorithm is utilized to obtain the solution of the optimization problem for multiple damage cases. And then for computing the objective function gradient, the sensitivity analysis regarding design variables is derived. In addition, due to the spatial incompleteness, the influence of stiffness reduction and incomplete modal measurement data is discussed by means of two numerical examples with several damage cases. Finally, based on the computational results, it is evident that the presented approach provides good validity and reliability for the large and complicated engineering structures.展开更多
In this paper a new nondestructive damage identification method is introduced. The method based on flexibility matrix can be used to detect and locate structm'al damage and evaluate the severity of damage in legs of ...In this paper a new nondestructive damage identification method is introduced. The method based on flexibility matrix can be used to detect and locate structm'al damage and evaluate the severity of damage in legs of jacket platforms by modal parameters of a structure. With the modal data for only the few lower modes in both the intact and damaged states, the one-dimensional and two-dimensional distributed curvatures can be used to analyze damage location and the severity. Instead of directly comparing the curvatures before and 'after damage, the method here uses modal parameters only in the damaged structure to detect the damage and it consists of three parts. First, ilexibility matrix is obtained by use of the absolute maximum in each column. Second, because the legs of jacket platforms are the pipe-like structure, the circumferential flexibility curvature matrix is obtained by use of the circular curvature. At last, equivalent curvature ratio is defined and the curve meaning equivalent curvature ratio and the severity of damage relationship for one element is given through the data of damage severity from ten percent to ninety percent by numerical simulation. Many existing damage detection methods need two steps, locate the damage firstly and evaluate the severity of the damage. However, the method present- ed! in this paper can locate and then evaluate the severity of damage at the same time. The numerical analysis results in- dicate that the present method is effective, useful and only need the first and the second mode data of the structure.展开更多
The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identica...The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identical hybrid element. The Hilbert stress subspace of the assumed stress modes is established. So, it is easy to derive the equivalent orthogonal normal stress modes by Schmidt's method. Because of the resulting diagonal flexibility matrix, the identical hybrid element is free from the complex matrix inversion so that the hybrid efficiency, is improved greatly. The numerical examples show that the method is effective.展开更多
In recent years,Structural Health Monitoring (SHM) has emerged as a new research area in civil engineering.Most existing health monitoring methodologies require direct measurement of input excitation for implementatio...In recent years,Structural Health Monitoring (SHM) has emerged as a new research area in civil engineering.Most existing health monitoring methodologies require direct measurement of input excitation for implementation.However,in many cases,there is no easy way to measure these inputs-or alternatively to externally excite the structure.Therefore,SHM methods based on ambient vibration have become important in civil engineering.In this paper,an approach is proposed based on the Damage Location Vector (DLV) method to handle the ambient vibration case.Here,this flexibility-matrix-based damage localization method is combined with a modal expansion technique to eliminate the need to measure the input excitation.As a by-product of this approach,in addition to determining the location of the damage,an estimate of the damage extent also can be determined.Finally,a numerical example analyzing a truss structure with limited sensors and noisy measurement is provided to verify the efficacy of the proposed approach.展开更多
This paper describes the damage detection in framed structures due to thevertical support settlement and rotation of footing bases. The damage detection procedureproposed by Nobahari et al. [Nobahari and Seyedpoor (20...This paper describes the damage detection in framed structures due to thevertical support settlement and rotation of footing bases. The damage detection procedureproposed by Nobahari et al. [Nobahari and Seyedpoor (2013)] is used to detect thedamage in the members of the frame. In the present study, instead of using the flexibilitymatrix (referred here as original flexibility matrix) method, the generalized flexibilitymatrix is used in the same algorithm and the results are compared. The algorithm usesflexibility matrix and strain energy concept to detect the damage in the members. Thebehaviour of the frame is discussed through changes observed in flexibility in theassociated degree of freedom. Finally, the results indicate that, the damage indexdetermined by generalized flexibility matrix method is more reliable than using theoriginal flexibility matrix based method for the problem of settlement and rotation offooting base.展开更多
In this paper,a coupled CFD-CSD method based on N-S equations is described for static aeroelastic correction and jig-shape design of large airliners.The wing structural flexibility matrix is analyzed by a finite eleme...In this paper,a coupled CFD-CSD method based on N-S equations is described for static aeroelastic correction and jig-shape design of large airliners.The wing structural flexibility matrix is analyzed by a finite element method with a double-beam model.The viscous multi-block structured grid is used in aerodynamic calculations.Flexibility matrix interpolation is fulfilled by use of a surface spline method.The load distributions on wing surface are evaluated by solving N-S equations with a parallel algorithm.A flexibility approach is employed to calculate the structural deformations.By successive iterations between steady aerodynamic forces and structural deformations,a coupled CFD-CSD method is achieved for the static aeroelastic correction and jig-shape design of a large airliner.The present method is applied to the static aeroelastic analysis and jig-shape design for a typical large airliner with engine nacelle and winglet.The numerical results indicate that calculations of static aeroelastic correction should employ tightly coupled CFD-CSD iterations,and that on a given cruise shape only one round of iterative design is needed to obtain the jig-shape meeting design requirements.展开更多
The multitooth meshing state of harmonic drive (HD) is an important basic characteristic of its high transformation precision and high bearing capacity. Meshing force distribution affects the load sharing of the tooth...The multitooth meshing state of harmonic drive (HD) is an important basic characteristic of its high transformation precision and high bearing capacity. Meshing force distribution affects the load sharing of the tooth during meshing, and theoretical research remains insufficient at present. To calculate the spatial distributed meshing forces and loading backlashes along the axial direction, an iterative algorithm and finite element model (FEM) is proposed to investigate the meshing state under varied transmission loading. The displacement formulae of meshing point under tangential force are derived according to the torsion of the flexspline cylinder and the bending of the tooth. Based on the relationship of meshing forces and circumferential displacements, meshing forces and loading backlashes in three cross-sections are calculated with the algorithm under gradually increased rotation angles of circular spline, and the results are compared with FEM. Owing to the taper deformation of the cup-shaped flexspline, the smallest initial backlash and the earliest meshing point appear in the front cross-section far from the cup bottom, and then the teeth in the middle cross-section of the tooth rim enter the meshing and carry most of the loading. Theoretical and numerical research show that the flexibility is quite different for varied meshing points and tangential force amplitude because of the change of contact status between the flexspline and the wave generator. The meshing forces and torsional stiffness of the HD are nonlinear with the torsional angle.展开更多
With the combination of modern quantitative analysis method and enterprise inputoutput model,in this paper we make a scientific analysis on the effect to product profit tax from the change of internal and external imp...With the combination of modern quantitative analysis method and enterprise inputoutput model,in this paper we make a scientific analysis on the effect to product profit tax from the change of internal and external important factors of enterprise,and some important results hare been given.展开更多
文摘A generalized flexibility–based objective function utilized for structure damage identification is constructed for solving the constrained nonlinear least squares optimized problem. To begin with, the generalized flexibility matrix (GFM) proposed to solve the damage identification problem is recalled and a modal expansion method is introduced. Next, the objective function for iterative optimization process based on the GFM is formulated, and the Trust-Region algorithm is utilized to obtain the solution of the optimization problem for multiple damage cases. And then for computing the objective function gradient, the sensitivity analysis regarding design variables is derived. In addition, due to the spatial incompleteness, the influence of stiffness reduction and incomplete modal measurement data is discussed by means of two numerical examples with several damage cases. Finally, based on the computational results, it is evident that the presented approach provides good validity and reliability for the large and complicated engineering structures.
文摘In this paper a new nondestructive damage identification method is introduced. The method based on flexibility matrix can be used to detect and locate structm'al damage and evaluate the severity of damage in legs of jacket platforms by modal parameters of a structure. With the modal data for only the few lower modes in both the intact and damaged states, the one-dimensional and two-dimensional distributed curvatures can be used to analyze damage location and the severity. Instead of directly comparing the curvatures before and 'after damage, the method here uses modal parameters only in the damaged structure to detect the damage and it consists of three parts. First, ilexibility matrix is obtained by use of the absolute maximum in each column. Second, because the legs of jacket platforms are the pipe-like structure, the circumferential flexibility curvature matrix is obtained by use of the circular curvature. At last, equivalent curvature ratio is defined and the curve meaning equivalent curvature ratio and the severity of damage relationship for one element is given through the data of damage severity from ten percent to ninety percent by numerical simulation. Many existing damage detection methods need two steps, locate the damage firstly and evaluate the severity of the damage. However, the method present- ed! in this paper can locate and then evaluate the severity of damage at the same time. The numerical analysis results in- dicate that the present method is effective, useful and only need the first and the second mode data of the structure.
文摘The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identical hybrid element. The Hilbert stress subspace of the assumed stress modes is established. So, it is easy to derive the equivalent orthogonal normal stress modes by Schmidt's method. Because of the resulting diagonal flexibility matrix, the identical hybrid element is free from the complex matrix inversion so that the hybrid efficiency, is improved greatly. The numerical examples show that the method is effective.
文摘In recent years,Structural Health Monitoring (SHM) has emerged as a new research area in civil engineering.Most existing health monitoring methodologies require direct measurement of input excitation for implementation.However,in many cases,there is no easy way to measure these inputs-or alternatively to externally excite the structure.Therefore,SHM methods based on ambient vibration have become important in civil engineering.In this paper,an approach is proposed based on the Damage Location Vector (DLV) method to handle the ambient vibration case.Here,this flexibility-matrix-based damage localization method is combined with a modal expansion technique to eliminate the need to measure the input excitation.As a by-product of this approach,in addition to determining the location of the damage,an estimate of the damage extent also can be determined.Finally,a numerical example analyzing a truss structure with limited sensors and noisy measurement is provided to verify the efficacy of the proposed approach.
文摘This paper describes the damage detection in framed structures due to thevertical support settlement and rotation of footing bases. The damage detection procedureproposed by Nobahari et al. [Nobahari and Seyedpoor (2013)] is used to detect thedamage in the members of the frame. In the present study, instead of using the flexibilitymatrix (referred here as original flexibility matrix) method, the generalized flexibilitymatrix is used in the same algorithm and the results are compared. The algorithm usesflexibility matrix and strain energy concept to detect the damage in the members. Thebehaviour of the frame is discussed through changes observed in flexibility in theassociated degree of freedom. Finally, the results indicate that, the damage indexdetermined by generalized flexibility matrix method is more reliable than using theoriginal flexibility matrix based method for the problem of settlement and rotation offooting base.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In this paper,a coupled CFD-CSD method based on N-S equations is described for static aeroelastic correction and jig-shape design of large airliners.The wing structural flexibility matrix is analyzed by a finite element method with a double-beam model.The viscous multi-block structured grid is used in aerodynamic calculations.Flexibility matrix interpolation is fulfilled by use of a surface spline method.The load distributions on wing surface are evaluated by solving N-S equations with a parallel algorithm.A flexibility approach is employed to calculate the structural deformations.By successive iterations between steady aerodynamic forces and structural deformations,a coupled CFD-CSD method is achieved for the static aeroelastic correction and jig-shape design of a large airliner.The present method is applied to the static aeroelastic analysis and jig-shape design for a typical large airliner with engine nacelle and winglet.The numerical results indicate that calculations of static aeroelastic correction should employ tightly coupled CFD-CSD iterations,and that on a given cruise shape only one round of iterative design is needed to obtain the jig-shape meeting design requirements.
基金the National Natural Science Foundation of China (Grant No. 51575390)the Natural Science Key Foundation of Tianjin, China (Grant Nos. 19JCZDJC38700 and 18JCZDJC39000).
文摘The multitooth meshing state of harmonic drive (HD) is an important basic characteristic of its high transformation precision and high bearing capacity. Meshing force distribution affects the load sharing of the tooth during meshing, and theoretical research remains insufficient at present. To calculate the spatial distributed meshing forces and loading backlashes along the axial direction, an iterative algorithm and finite element model (FEM) is proposed to investigate the meshing state under varied transmission loading. The displacement formulae of meshing point under tangential force are derived according to the torsion of the flexspline cylinder and the bending of the tooth. Based on the relationship of meshing forces and circumferential displacements, meshing forces and loading backlashes in three cross-sections are calculated with the algorithm under gradually increased rotation angles of circular spline, and the results are compared with FEM. Owing to the taper deformation of the cup-shaped flexspline, the smallest initial backlash and the earliest meshing point appear in the front cross-section far from the cup bottom, and then the teeth in the middle cross-section of the tooth rim enter the meshing and carry most of the loading. Theoretical and numerical research show that the flexibility is quite different for varied meshing points and tangential force amplitude because of the change of contact status between the flexspline and the wave generator. The meshing forces and torsional stiffness of the HD are nonlinear with the torsional angle.
文摘With the combination of modern quantitative analysis method and enterprise inputoutput model,in this paper we make a scientific analysis on the effect to product profit tax from the change of internal and external important factors of enterprise,and some important results hare been given.