We propose an analytical model for drain current and inversion charge in the subthreshold region for an underlap DG FinFET by using the minimum channel potential method, i.e., the virtual source. The flicker and therm...We propose an analytical model for drain current and inversion charge in the subthreshold region for an underlap DG FinFET by using the minimum channel potential method, i.e., the virtual source. The flicker and thermal noise spectral density models are also developed using these charge and current models expression. The model is validated with already published experimental results of flicker noise for DG FinFETs. For an ultrathin body, the degradation of effective mobility and variation of the scattering parameter are considered. The effect of device parameters like gate length Lg and underlap length Lun on both flicker and thermal noise spectral densities are also analyzed. Increasing Lg and Lun, increases the effective gate length, which reduces drain current, resulting in decreased flicker and thermal noise density. A decrease of flicker noise is observed for an increase of frequency, which indicates that the device can be used for wide range of frequency applications.展开更多
This paper proposes a one-branch zero-IF receiver topology, which samples the I and Q signals of the modulated RF carrier with one signal path by means of a multiphase local oscillator. The suggested one-branch re- ce...This paper proposes a one-branch zero-IF receiver topology, which samples the I and Q signals of the modulated RF carrier with one signal path by means of a multiphase local oscillator. The suggested one-branch re- ceiver works without matching problem, and it is also capable of cancelling out the flicker noise and DC-offset when the local oscillator is configured to the four-phase mode. The one-branch receiver saves much area and power com- pared with the traditional two-branch ones. All of the advantages above make the one-branch receiver topology a promising architectural candidate for low-power and low-cost RF CMOS receiver designs. Keywords: RF CMOS; zero-IF; flicker noise; image rejection; low-power; IQ matching展开更多
Quantum tunneling conductance of molecular junctions originates from the charge transport through theπ-orbitals(π-transport)and theσ-orbitals(σ-transport)of the molecules,but theσ-transport can not be observed du...Quantum tunneling conductance of molecular junctions originates from the charge transport through theπ-orbitals(π-transport)and theσ-orbitals(σ-transport)of the molecules,but theσ-transport can not be observed due to the more rapid decay of the tunneling conductance in theσ-system compared to that in theπ-system.Here,we demonstrate that dominantσ-transport can be observed inπ-conjugated molecular junctions at the sub-nanometer scale using the scanning tunneling microscope break junction technique(STM-BJ).We have found that the conductance of meta-connected picolinic acid,which mainly occurs byσ-transport,is∼35 times higher than that of its para-isomer,which is entirely different from what is expected fromπ-transport through these systems.Flicker noise analysis reveals that the transport through the meta-connection exhibits more through-bond transport than the para-counterpart and density functional theory(DFT)shows that theσ-system provides the dominant transport path.These results reveal that theσ-electrons,rather than theπ-electrons,can dominate charge transport through conjugated molecular junctions at the sub-nanometer scale,and this provides a new avenue toward the future miniaturization of molecular devices and materials.展开更多
A differential LC voltage controlled oscillator (VCO) employing parasitic vertical-NPN (V-NPN) transistors as a negative gm-cell is presented to improve the close-in phase noise. The V-NPN transistors have lower f...A differential LC voltage controlled oscillator (VCO) employing parasitic vertical-NPN (V-NPN) transistors as a negative gm-cell is presented to improve the close-in phase noise. The V-NPN transistors have lower flicker noise compared to MOS transistors. DC and AC characteristics of the V-NPN transistors are measured to facilitate the VCO design. The proposed VCO is implemented in a 0.18 μm CMOS RF/mixed signal process, and the measurement results show the close-in phase noise is improved by 3.5-9.1 dB from 100 Hz to 10 kHz offset compared to that of a similar CMOS VCO. The proposed VCO consumes only 0.41 mA from a 1.5 V power supply.展开更多
To meet the requirements of the low power Zigbee system, VCO design optimizations of phase noise, power consumption and frequency tuning are discussed in this paper. Both flicker noise of tail bias transistors and up-...To meet the requirements of the low power Zigbee system, VCO design optimizations of phase noise, power consumption and frequency tuning are discussed in this paper. Both flicker noise of tail bias transistors and up-conversion of flicker noise from cross-coupled pair are reduced by improved self-switched biasing technology, leading to low close-in phase noise. Low power is achieved by low supply voltage and triode region biasing. To linearly tune the frequency and get constant gain, distributed varactor structure is adopted. The proposed VCO is fabricated in SMIC 0.18-#m CMOS process. The measured linear tuning range is from 2.38 to 2.61 GHz. The oscillator exhibits low phase noise of-77.5 dBc/Hz and -122.8 dBc/Hz at l0 kHz and 1 MHz offset, respectively, at 2.55 GHz oscillation frequency while dissipating 2.7 mA from 1.2 V supply voltage, which well meet design specifications.展开更多
A reconfigurable complex band-pass (CBP)/low-pass (LP) active-RC filter with a noise-shaping technique for wireless receivers is presented. Its bandwidth is reconfigurable among 500 kHz, 1 MHz and 4 MHz in LP mode...A reconfigurable complex band-pass (CBP)/low-pass (LP) active-RC filter with a noise-shaping technique for wireless receivers is presented. Its bandwidth is reconfigurable among 500 kHz, 1 MHz and 4 MHz in LP mode and 1 MHz, 2 MHz and 8 MHz in CBP mode with 3 MHz center frequency. The Op-Amps used in the filter are realized in cell arrays in order to obtain scalable power consumption among the different operation modes. Furthermore, the filter can be configured into the 1st order, 2nd order or 3rd order mode, thus achieving a flexible filtering property. The noise-shaping technique is introduced to suppress the flicker noise contribution. The filter has been implemented in 180 nm CMOS and consumes less than 3 mA in the 3rd 8 MHz-bandwidth CBP mode. The spot noise at 100 Hz can be reduced by 14.4 dB at most with the introduced noise-shaping technique.展开更多
A high power X-band hybrid microwave integrated voltage controlled oscillator(VCO) based on Al-GaN /GaN HEMT is presented.The oscillator design utilizes a common-gate negative resistance structure with open and shor...A high power X-band hybrid microwave integrated voltage controlled oscillator(VCO) based on Al-GaN /GaN HEMT is presented.The oscillator design utilizes a common-gate negative resistance structure with open and short-circuit stub microstrip lines as the main resonator for a high Q factor.The VCO operating at 20 V drain bias and-1.9 V gate bias exhibits an output power of 28 dBm at the center frequency of 8.15 GHz with an efficiency of 21%.Phase noise is estimated to be -85 dBc/Hz at 100 kHz offset and -128 dBc/Hz at 1 MHz offset.The tuning range is more than 50 MHz.The dominating effect of GaN HEMT's flicker noise on oscillator phase noise performance has also been discussed.The measured results show great promise for AlGaN/GaN HEMT technology to be used in high power and low phase noise microwave source applications.展开更多
文摘We propose an analytical model for drain current and inversion charge in the subthreshold region for an underlap DG FinFET by using the minimum channel potential method, i.e., the virtual source. The flicker and thermal noise spectral density models are also developed using these charge and current models expression. The model is validated with already published experimental results of flicker noise for DG FinFETs. For an ultrathin body, the degradation of effective mobility and variation of the scattering parameter are considered. The effect of device parameters like gate length Lg and underlap length Lun on both flicker and thermal noise spectral densities are also analyzed. Increasing Lg and Lun, increases the effective gate length, which reduces drain current, resulting in decreased flicker and thermal noise density. A decrease of flicker noise is observed for an increase of frequency, which indicates that the device can be used for wide range of frequency applications.
基金Supported by National Natural Science Foundation of China(No.60576026)
文摘This paper proposes a one-branch zero-IF receiver topology, which samples the I and Q signals of the modulated RF carrier with one signal path by means of a multiphase local oscillator. The suggested one-branch re- ceiver works without matching problem, and it is also capable of cancelling out the flicker noise and DC-offset when the local oscillator is configured to the four-phase mode. The one-branch receiver saves much area and power com- pared with the traditional two-branch ones. All of the advantages above make the one-branch receiver topology a promising architectural candidate for low-power and low-cost RF CMOS receiver designs. Keywords: RF CMOS; zero-IF; flicker noise; image rejection; low-power; IQ matching
基金supported by the National Natural Science Foundation of China(21722305,21673195,21973079,and 21703188)the National Key R&D Program of China(2017YFA0204902)the Guangdong Basic and Applied Basic Research Foundation(2020A151511106).
文摘Quantum tunneling conductance of molecular junctions originates from the charge transport through theπ-orbitals(π-transport)and theσ-orbitals(σ-transport)of the molecules,but theσ-transport can not be observed due to the more rapid decay of the tunneling conductance in theσ-system compared to that in theπ-system.Here,we demonstrate that dominantσ-transport can be observed inπ-conjugated molecular junctions at the sub-nanometer scale using the scanning tunneling microscope break junction technique(STM-BJ).We have found that the conductance of meta-connected picolinic acid,which mainly occurs byσ-transport,is∼35 times higher than that of its para-isomer,which is entirely different from what is expected fromπ-transport through these systems.Flicker noise analysis reveals that the transport through the meta-connection exhibits more through-bond transport than the para-counterpart and density functional theory(DFT)shows that theσ-system provides the dominant transport path.These results reveal that theσ-electrons,rather than theπ-electrons,can dominate charge transport through conjugated molecular junctions at the sub-nanometer scale,and this provides a new avenue toward the future miniaturization of molecular devices and materials.
基金supported by the Innovation Founding of Fudan University,China
文摘A differential LC voltage controlled oscillator (VCO) employing parasitic vertical-NPN (V-NPN) transistors as a negative gm-cell is presented to improve the close-in phase noise. The V-NPN transistors have lower flicker noise compared to MOS transistors. DC and AC characteristics of the V-NPN transistors are measured to facilitate the VCO design. The proposed VCO is implemented in a 0.18 μm CMOS RF/mixed signal process, and the measurement results show the close-in phase noise is improved by 3.5-9.1 dB from 100 Hz to 10 kHz offset compared to that of a similar CMOS VCO. The proposed VCO consumes only 0.41 mA from a 1.5 V power supply.
基金supported by the National Science and Technology Major Project,China(No.2009ZX03006 009)the USTC and IMECAS Jointed Lab Micro-/Nano-Electronic System Integration R&D Center(MESIC)
文摘To meet the requirements of the low power Zigbee system, VCO design optimizations of phase noise, power consumption and frequency tuning are discussed in this paper. Both flicker noise of tail bias transistors and up-conversion of flicker noise from cross-coupled pair are reduced by improved self-switched biasing technology, leading to low close-in phase noise. Low power is achieved by low supply voltage and triode region biasing. To linearly tune the frequency and get constant gain, distributed varactor structure is adopted. The proposed VCO is fabricated in SMIC 0.18-#m CMOS process. The measured linear tuning range is from 2.38 to 2.61 GHz. The oscillator exhibits low phase noise of-77.5 dBc/Hz and -122.8 dBc/Hz at l0 kHz and 1 MHz offset, respectively, at 2.55 GHz oscillation frequency while dissipating 2.7 mA from 1.2 V supply voltage, which well meet design specifications.
基金Project supported by the National Science and Technology Major Projects of China(No.2012ZX03004007)the National Natural Science Foundation of China(Nos.61020106006,61076029)
文摘A reconfigurable complex band-pass (CBP)/low-pass (LP) active-RC filter with a noise-shaping technique for wireless receivers is presented. Its bandwidth is reconfigurable among 500 kHz, 1 MHz and 4 MHz in LP mode and 1 MHz, 2 MHz and 8 MHz in CBP mode with 3 MHz center frequency. The Op-Amps used in the filter are realized in cell arrays in order to obtain scalable power consumption among the different operation modes. Furthermore, the filter can be configured into the 1st order, 2nd order or 3rd order mode, thus achieving a flexible filtering property. The noise-shaping technique is introduced to suppress the flicker noise contribution. The filter has been implemented in 180 nm CMOS and consumes less than 3 mA in the 3rd 8 MHz-bandwidth CBP mode. The spot noise at 100 Hz can be reduced by 14.4 dB at most with the introduced noise-shaping technique.
基金Project supported by the State Key Development Program for Basic Research of China(No.2010CB327500)the National Natural Science Foundation of China(No.60890191).
文摘A high power X-band hybrid microwave integrated voltage controlled oscillator(VCO) based on Al-GaN /GaN HEMT is presented.The oscillator design utilizes a common-gate negative resistance structure with open and short-circuit stub microstrip lines as the main resonator for a high Q factor.The VCO operating at 20 V drain bias and-1.9 V gate bias exhibits an output power of 28 dBm at the center frequency of 8.15 GHz with an efficiency of 21%.Phase noise is estimated to be -85 dBc/Hz at 100 kHz offset and -128 dBc/Hz at 1 MHz offset.The tuning range is more than 50 MHz.The dominating effect of GaN HEMT's flicker noise on oscillator phase noise performance has also been discussed.The measured results show great promise for AlGaN/GaN HEMT technology to be used in high power and low phase noise microwave source applications.