For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with i...For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with information sharing strategy and velocity disturbance operator,is proposed.In improved PSO algorithm,an information sharing strategy is used to avoid the premature convergence as much as possible;the velocity disturbance operator is adopted to jump out of this position once falling into the premature convergence.Simulations on lateral and longitudinal aerodynamic modeling for ATTAS (advanced technologies testing aircraft system) indicate that the proposed method can achieve the accuracy improvement of an order of magnitude compared with SPSO-WNN,and can converge to a satisfactory precision by only 60 120 iterations in contrast to SPSO-WNN with 6 times precocities in 200 times repetitive experiments using Morlet and Mexican hat wavelet functions.Furthermore,it is proved that the proposed method is feasible and effective for aerodynamic modeling from flight data.展开更多
Flight data anomaly detection plays an imperative role in the safety and maintenance of unmanned aerial vehicles(UAVs).It has attracted extensive attention from researchers.However,the problems related to the difficul...Flight data anomaly detection plays an imperative role in the safety and maintenance of unmanned aerial vehicles(UAVs).It has attracted extensive attention from researchers.However,the problems related to the difficulty in obtaining abnormal data,low model accuracy,and high calculation cost have led to severe challenges with respect to its practical applications.Hence,in this study,firstly,several UAV flight data simulation softwares are presented based on a brief presentation of the basic concepts of anomalies,the contents of UAV flight data,and the public datasets for flight data anomaly detection.Then,anomaly detection technologies for UAV flight data are comprehensively reviewed,including knowledge-based,model-based,and data-driven methods.Next,UAV flight data anomaly detection applications are briefly described and analyzed.Finally,the future trends and directions of UAV flight data anomaly detection are summarized and prospected,which aims to provide references for the following research.展开更多
This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer(HSCAT). The aim was to evaluate HSCAT performance and a...This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer(HSCAT). The aim was to evaluate HSCAT performance and a developed data processing algorithm for the HSCAT before launch. There were three test flights of the scatterometer, on January 15, 18 and 22, 2010, over the South China Sea near Lingshui, Hainan. The test flights successfully generated simultaneous airborne scatterometer normalized radar cross section(NRCS), ASCAT wind, and ship-borne-measured wind datasets, which were used to analyze HSCAT performance. Azimuthal dependence of the NRCS relative to the wind direction was nearly cos(2w), with NRCS minima at crosswind directions, and maxima near upwind and downwind. The NRCS also showed a small difference between upwind and downwind directions, with upwind crosssections generally larger than those downwind. The dependence of airborne scatterometer NRCS on wind direction and speed showed favorable consistency with the NASA scatterometer geophysical model function(NSCAT GMF), indicating satisfactory HSCAT performance.展开更多
Recent progress in nuclear data measurement for ADS at Institute of Modern Physics is reviewed briefly.Based on the cooler storage ring of the Heavy Ion Research Facility in Lanzhou, nuclear data terminal was establis...Recent progress in nuclear data measurement for ADS at Institute of Modern Physics is reviewed briefly.Based on the cooler storage ring of the Heavy Ion Research Facility in Lanzhou, nuclear data terminal was established.The nuclear data measurement facility for the ADS spallation target has been constructed, which provides a very important platform for the experimental measurements of spallation reactions. A number of experiments have been conducted in the nuclear data terminal. A Neutron Time-of-Flight(NTOF)spectrometer was developed for the study of neutron production from spallation reactions related to the ADS project.The experiments of 400 MeV/u ^(16)O bombarded on a tungsten target were presented using a NTOF spectrometer.Neutron yields for 250 MeV protons incident on a thick grain-made tungsten target and a thick solid lead target have been measured using the water-bath neutron activation method. Spallation residual productions were studied by bombarding W and Pb targets with a 250 MeV proton beam using the neutron activation method. Benchmarking of evaluated nuclear data libraries was performed for D-T neutrons on ADS relevant materials by using the benchmark experimental facility at the China Institute of Atomic Energy.展开更多
Integral experiments on tungsten slab samples were carried out on the D-T neutron source facility at China Institute of Atomic Energy. Leakage neutron spectra from the irradiated tungsten target were measured by the t...Integral experiments on tungsten slab samples were carried out on the D-T neutron source facility at China Institute of Atomic Energy. Leakage neutron spectra from the irradiated tungsten target were measured by the time-of-flight technique. Accuracy of the nuclear data for tungsten was examined by comparing the measured neutron spectra with the leakage neutron spectra simulated using the MCNP-4C code with evaluated nuclear data of the JEFF-3.2, FENDL-3.0 and TENDL-2014 libraries. The results show that the calculations with JEFF-3.2 agree well with the measurements in the whole energy range and all angles, whereas the spectra calculated with FENDL-3.0 and TENDL-2014 have some discrepancies with the experimental data.展开更多
文摘For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with information sharing strategy and velocity disturbance operator,is proposed.In improved PSO algorithm,an information sharing strategy is used to avoid the premature convergence as much as possible;the velocity disturbance operator is adopted to jump out of this position once falling into the premature convergence.Simulations on lateral and longitudinal aerodynamic modeling for ATTAS (advanced technologies testing aircraft system) indicate that the proposed method can achieve the accuracy improvement of an order of magnitude compared with SPSO-WNN,and can converge to a satisfactory precision by only 60 120 iterations in contrast to SPSO-WNN with 6 times precocities in 200 times repetitive experiments using Morlet and Mexican hat wavelet functions.Furthermore,it is proved that the proposed method is feasible and effective for aerodynamic modeling from flight data.
基金supported by the National Key R&D Program of China(Grant No.2020YFB1713300)Guizhou Provincial Colleges and Universities Talent Training Base Project(Grant No.[2020]009)+3 种基金Guizhou Province Science and Technology Plan Project(Grant Nos.[2015]4011 and[2017]5788)Guizhou Provincial Department of Education Youth Science and Technology Talent Growth Project(Grant No.[2022]142)the Scientific Research Project for Introducing Talents from Guizhou University(Grant No.(2021)74)the Guizhou Province Higher Education Integrated Research Platform Project(Grant No.[2020]005)。
文摘Flight data anomaly detection plays an imperative role in the safety and maintenance of unmanned aerial vehicles(UAVs).It has attracted extensive attention from researchers.However,the problems related to the difficulty in obtaining abnormal data,low model accuracy,and high calculation cost have led to severe challenges with respect to its practical applications.Hence,in this study,firstly,several UAV flight data simulation softwares are presented based on a brief presentation of the basic concepts of anomalies,the contents of UAV flight data,and the public datasets for flight data anomaly detection.Then,anomaly detection technologies for UAV flight data are comprehensively reviewed,including knowledge-based,model-based,and data-driven methods.Next,UAV flight data anomaly detection applications are briefly described and analyzed.Finally,the future trends and directions of UAV flight data anomaly detection are summarized and prospected,which aims to provide references for the following research.
基金Supported by the National Natural Science Foundation of China(No.41106152)the National Science and Technology Support Program of China(No.2013BAD13B01)+3 种基金the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the International Science&Technology Cooperation Program of China(No.2011DFA22260)the National High Technology Industrialization Project(No.[2012]2083)the Marine Public Projects of China(Nos.201105032,201305032,201105002-07)
文摘This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer(HSCAT). The aim was to evaluate HSCAT performance and a developed data processing algorithm for the HSCAT before launch. There were three test flights of the scatterometer, on January 15, 18 and 22, 2010, over the South China Sea near Lingshui, Hainan. The test flights successfully generated simultaneous airborne scatterometer normalized radar cross section(NRCS), ASCAT wind, and ship-borne-measured wind datasets, which were used to analyze HSCAT performance. Azimuthal dependence of the NRCS relative to the wind direction was nearly cos(2w), with NRCS minima at crosswind directions, and maxima near upwind and downwind. The NRCS also showed a small difference between upwind and downwind directions, with upwind crosssections generally larger than those downwind. The dependence of airborne scatterometer NRCS on wind direction and speed showed favorable consistency with the NASA scatterometer geophysical model function(NSCAT GMF), indicating satisfactory HSCAT performance.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences ADS Project(No.XDA03030200)the National Natural Science Foundation of China(No.91426301)
文摘Recent progress in nuclear data measurement for ADS at Institute of Modern Physics is reviewed briefly.Based on the cooler storage ring of the Heavy Ion Research Facility in Lanzhou, nuclear data terminal was established.The nuclear data measurement facility for the ADS spallation target has been constructed, which provides a very important platform for the experimental measurements of spallation reactions. A number of experiments have been conducted in the nuclear data terminal. A Neutron Time-of-Flight(NTOF)spectrometer was developed for the study of neutron production from spallation reactions related to the ADS project.The experiments of 400 MeV/u ^(16)O bombarded on a tungsten target were presented using a NTOF spectrometer.Neutron yields for 250 MeV protons incident on a thick grain-made tungsten target and a thick solid lead target have been measured using the water-bath neutron activation method. Spallation residual productions were studied by bombarding W and Pb targets with a 250 MeV proton beam using the neutron activation method. Benchmarking of evaluated nuclear data libraries was performed for D-T neutrons on ADS relevant materials by using the benchmark experimental facility at the China Institute of Atomic Energy.
基金supported by the National Natural Science Foundation of China(No.11605097,91426301,and 11605257)Doctoral Scientific Research Foundation of Inner Mongolia University for the Nationalities(No.BS365)the‘‘ADS project 302’’of the Chinese Academy of Sciences(No.XDA03030200)
文摘Integral experiments on tungsten slab samples were carried out on the D-T neutron source facility at China Institute of Atomic Energy. Leakage neutron spectra from the irradiated tungsten target were measured by the time-of-flight technique. Accuracy of the nuclear data for tungsten was examined by comparing the measured neutron spectra with the leakage neutron spectra simulated using the MCNP-4C code with evaluated nuclear data of the JEFF-3.2, FENDL-3.0 and TENDL-2014 libraries. The results show that the calculations with JEFF-3.2 agree well with the measurements in the whole energy range and all angles, whereas the spectra calculated with FENDL-3.0 and TENDL-2014 have some discrepancies with the experimental data.