In this paper,as for the unmanned air vehicle(UAV)under external disturbance,an attainable-equilibrium-set-based safety fight envelope(SFE)calculation method is proposed,based on which a prescribed performance protect...In this paper,as for the unmanned air vehicle(UAV)under external disturbance,an attainable-equilibrium-set-based safety fight envelope(SFE)calculation method is proposed,based on which a prescribed performance protection control scheme is presented.Firstly,the existing definition of the SFE based on attainable equilibrium set(AES)is extended to make it consistent and suitable for the UAV system under disturbance.Secondly,a higher-order disturbance observer(HODO)is developed to estimate the disturbances and the disturbance estimation is applied in the computation of the SFE.Thirdly,by using the calculated SFE,a desired safety trajectory based on the time-varying safety margin function and first-order filter is developed to prevent the states of the UAV system from exceeding the SFE.Moreover,an SFE protection controller is proposed by combining the desired safety trajectory,backstepping method,HODO design,and prescribed performance(PP)control technique.In particular,the closed-loop system is established on the basis of disturbance estimation error,filter error,and tracking error.Finally,the stability of the closed-loop system is verified by the Lyapunov stability theory,and the simulations are presented to illustrate the effectiveness of the proposed control scheme.展开更多
This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended met...This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended methods are capable of calculating the continuation curves of the equilibrium points for the particular type of trimming flight. Therefore, these methods can not only give the performance measures of aircraft, but also determine the stability of trimming points. In this paper, the methods are used to verify the effectiveness of the thrust vectoring control law, to define the flight envelope boundary, to analyze the stability and controllability of trimming flight, and to predict the departures of the instable flight. The result shows that the extended methods provide more flight dynamic information and are useful in preliminary design of the thrust vectoring aircraft.展开更多
Artificial neural network (ANN) has a great capability of self learning. The application of neural network to flight controller design can get good result. This paper studies the method of choosing controller paramet...Artificial neural network (ANN) has a great capability of self learning. The application of neural network to flight controller design can get good result. This paper studies the method of choosing controller parameters using neural network with Back Propagation (B P) algorithm. Design and simulation results show that this method can be used in flight control system design.展开更多
针对一个并联式涡轮基组合循环(Turbine Based Combined Cycle,TBCC)发动机排气系统的气动方案,对其在整个飞行包线范围内典型工作点上的流场进行了数值模拟研究,获得了飞行包线范围内排气系统相应的推力系数、升力、俯仰力矩随飞行马...针对一个并联式涡轮基组合循环(Turbine Based Combined Cycle,TBCC)发动机排气系统的气动方案,对其在整个飞行包线范围内典型工作点上的流场进行了数值模拟研究,获得了飞行包线范围内排气系统相应的推力系数、升力、俯仰力矩随飞行马赫数的变化关系。计算结果显示,在整个飞行包线范围内,排气系统的轴向推力系数随着飞行马赫数先减小后增大,在跨声速飞行时降到最低Ma=0.9,涡喷不加力时为0.562,加力时0.662),在设计点附近达到最大;升力和俯仰力矩性能在亚声速及跨声速飞行时较差,在超声速飞行时随着飞行马赫数增加逐渐好转。表明排气系统在跨声速飞行范围内工作时应采取措施以改善其性能。展开更多
基金supported in part by the National Science Fund for Distinguished Young Scholars 61825302in part by the National Natural Science Foundation of China under Grant U2013201in part by the Key R&D projects(Social Development)in Jiangsu Province of China under Grant BE2020704.
文摘In this paper,as for the unmanned air vehicle(UAV)under external disturbance,an attainable-equilibrium-set-based safety fight envelope(SFE)calculation method is proposed,based on which a prescribed performance protection control scheme is presented.Firstly,the existing definition of the SFE based on attainable equilibrium set(AES)is extended to make it consistent and suitable for the UAV system under disturbance.Secondly,a higher-order disturbance observer(HODO)is developed to estimate the disturbances and the disturbance estimation is applied in the computation of the SFE.Thirdly,by using the calculated SFE,a desired safety trajectory based on the time-varying safety margin function and first-order filter is developed to prevent the states of the UAV system from exceeding the SFE.Moreover,an SFE protection controller is proposed by combining the desired safety trajectory,backstepping method,HODO design,and prescribed performance(PP)control technique.In particular,the closed-loop system is established on the basis of disturbance estimation error,filter error,and tracking error.Finally,the stability of the closed-loop system is verified by the Lyapunov stability theory,and the simulations are presented to illustrate the effectiveness of the proposed control scheme.
文摘This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended methods are capable of calculating the continuation curves of the equilibrium points for the particular type of trimming flight. Therefore, these methods can not only give the performance measures of aircraft, but also determine the stability of trimming points. In this paper, the methods are used to verify the effectiveness of the thrust vectoring control law, to define the flight envelope boundary, to analyze the stability and controllability of trimming flight, and to predict the departures of the instable flight. The result shows that the extended methods provide more flight dynamic information and are useful in preliminary design of the thrust vectoring aircraft.
文摘Artificial neural network (ANN) has a great capability of self learning. The application of neural network to flight controller design can get good result. This paper studies the method of choosing controller parameters using neural network with Back Propagation (B P) algorithm. Design and simulation results show that this method can be used in flight control system design.
文摘针对一个并联式涡轮基组合循环(Turbine Based Combined Cycle,TBCC)发动机排气系统的气动方案,对其在整个飞行包线范围内典型工作点上的流场进行了数值模拟研究,获得了飞行包线范围内排气系统相应的推力系数、升力、俯仰力矩随飞行马赫数的变化关系。计算结果显示,在整个飞行包线范围内,排气系统的轴向推力系数随着飞行马赫数先减小后增大,在跨声速飞行时降到最低Ma=0.9,涡喷不加力时为0.562,加力时0.662),在设计点附近达到最大;升力和俯仰力矩性能在亚声速及跨声速飞行时较差,在超声速飞行时随着飞行马赫数增加逐渐好转。表明排气系统在跨声速飞行范围内工作时应采取措施以改善其性能。