This study presents a detailed analysis of the asymmetric relationships between the warm/cold phase of the El Ni?o–Southern Oscillation and the typical flood/drought years in summer over Chongqing.Furthermore,its und...This study presents a detailed analysis of the asymmetric relationships between the warm/cold phase of the El Ni?o–Southern Oscillation and the typical flood/drought years in summer over Chongqing.Furthermore,its underpinning mechanisms are also explored.The results show that:(1)El Ni?o and La Ni?a have an asymmetric influence on summer precipitation in the following year over Chongqing.Generally,the composite atmospheric circulation anomalies for El Ni?o years are consistent with the composite results for typical flood years in summer over Chongqing,which indicates a tight link between typical flood years in summer over Chongqing and El Ni?o events.However,the relationship between typical drought years in summer over Chongqing and La Ni?a events is not significant.(2)From winter to the following summer,the extent of positive SST anomalies in the equatorial eastern Pacific associated with typical flood years in summer over Chongqing shrinks,whereas in the tropical Indian Ocean,the extent slightly expands.This trend indicates that the impact of El Ni?o on typical flood years in summer over Chongqing is maintained through the‘relay effect’of SSTs in the tropical Indian Ocean,which is the result of a lagged response of positive SST anomalies in the tropical Indian Ocean to El Ni?o events in winter.展开更多
Mastering the pattern of food loss caused by droughts and floods aids in planning the layout of agricultural production,determining the scale of drought and flood control projects,and reducing food loss.The Standardiz...Mastering the pattern of food loss caused by droughts and floods aids in planning the layout of agricultural production,determining the scale of drought and flood control projects,and reducing food loss.The Standardized Precipitation Evapotranspiration Index is calculated using monthly meteorological data from 1984 to 2020 in Shandong Province of China and is used to identify the province’s drought and flood characteristics.Then,food losses due to droughts and floods are estimated separately from disaster loss data.Finally,the relationship between drought/flood-related factors and food losses is quantified using methods such as the Pearson correlation coefficient and linear regression.The results show that:1)there is a trend of aridity in Shandong Province,and the drought characteristic variables are increasing yearly while flood duration and severity are decreasing.2)The food losses caused by droughts in Shandong Province are more than those caused by floods,and the area where droughts and floods occur frequently is located in Linyi City.3)The impact of precipitation on food loss due to drought/flood is significant,followed by potential evapotranspiration and temperature.4)The relationship between drought and flood conditions and food losses can be precisely quantified.The accumulated drought duration of one month led to 1.939×10^(4)t of grain loss,and an increase in cumulative flood duration of one month resulted in1.134×10^(4)t of grain loss.If the cumulative drought severity and average drought peak increased by one unit,food loss due to drought will increase by 1.562×10^(4)t and 1.511×10^(6)t,respectively.If the cumulative flood severity and average flood peak increase by one unit,food loss will increase by 8.470×103t and 1.034×10^(6)t,respectively.展开更多
Based on the data of annual average precipitation in Deyang area and its five stations (Mianzhu, Deyang, Zhongjiang, Shifang and Guanghan) from 1984 to 2013, the annual precipitation anomaly percentage was calculated,...Based on the data of annual average precipitation in Deyang area and its five stations (Mianzhu, Deyang, Zhongjiang, Shifang and Guanghan) from 1984 to 2013, the annual precipitation anomaly percentage was calculated, and then the flood and drought situation in Deyang area was graded to discuss the variation characteristics of droughts and floods in the past 30 years. The results show that the cycle of droughts and floods in Deyang was about 3-5 a. The precipitation anomaly percentage indicates that the climate in Deyang area of Sichuan tended to be dry slowly in the past 30 years, and Deyang gradually entered a dry and warm period.展开更多
Climate change is expected to have long-term impacts on drought and wildfire risks in Oregon as summers continue to become warmer and drier. This paper investigates the projected changes in drought characteristics and...Climate change is expected to have long-term impacts on drought and wildfire risks in Oregon as summers continue to become warmer and drier. This paper investigates the projected changes in drought characteristics and drought propagation in the Umatilla River Basin in northeastern Oregon for mid-century(2030–2059) and late-century(2070–2099) climate scenarios. Drought characteristics for projected climates were determined using downscaled CMIP5 climate datasets from ten climate models and Soil and Water Assessment Tool to simulate effects on hydrologic processes. Short-term(three months) drought characteristics(frequency, duration, and severity) were analyzed using four drought indices, including the Standardized Precipitation Index(SPI-3), Standardized Precipitation-Evapotranspiration Index(SPEI-3), Standardized Streamflow Index(SSI-3), and the Standardized Soil Moisture Index(SSMI-3). Results indicate that short-term meteorological droughts are projected to become more prevalent, with up to a 20% increase in the frequency of SPI-3drought events. Short-term hydrological droughts are projected to become more frequent(average increase of 11% in frequency of SSI-3 drought events), more severe, and longer in duration(average increase of 8% for short-term droughts).Similarly, short-term agricultural droughts are projected to become more frequent(average increase of 28% in frequency of SSMI-3 drought events) but slightly shorter in duration(average decrease of 4%) in the future. Historically, drought propagation time from meteorological to hydrological drought is shorter than from meteorological to agricultural drought in most sub-basins. For the projected climate scenarios, the decrease in drought propagation time will likely stress the timing and capacity of water supply in the basin for irrigation and other uses.展开更多
Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,reasonable drought simulations have remained a challenge, and the related performances of the curr...Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,reasonable drought simulations have remained a challenge, and the related performances of the current state-of-the-art Coupled Model Intercomparison Project phase 6(CMIP6) models remain unknown. Here, both the strengths and weaknesses of CMIP6 models in simulating droughts and corresponding hydrothermal conditions in drylands are assessed.While the general patterns of simulated meteorological elements in drylands resemble the observations, the annual precipitation is overestimated by ~33%(with a model spread of 2.3%–77.2%), along with an underestimation of potential evapotranspiration(PET) by ~32%(17.5%–47.2%). The water deficit condition, measured by the difference between precipitation and PET, is 50%(29.1%–71.7%) weaker than observations. The CMIP6 models show weaknesses in capturing the climate mean drought characteristics in drylands, particularly with the occurrence and duration largely underestimated in the hyperarid Afro-Asian areas. Nonetheless, the drought-associated meteorological anomalies, including reduced precipitation, warmer temperatures, higher evaporative demand, and increased water deficit conditions, are reasonably reproduced. The simulated magnitude of precipitation(water deficit) associated with dryland droughts is overestimated by 28%(24%) compared to observations. The observed increasing trends in drought fractional area,occurrence, and corresponding meteorological anomalies during 1980–2014 are reasonably reproduced. Still, the increase in drought characteristics, associated precipitation and water deficit are obviously underestimated after the late 1990s,especially for mild and moderate droughts, indicative of a weaker response of dryland drought changes to global warming in CMIP6 models. Our results suggest that it is imperative to employ bias correction approaches in drought-related studies over drylands by using CMIP6 outputs.展开更多
Extreme droughts are anticipated to have detrimental impacts on forest ecosystems,especially in water-limited regions,due to the influence of climate change.However,considerable uncertainty remains regarding the patte...Extreme droughts are anticipated to have detrimental impacts on forest ecosystems,especially in water-limited regions,due to the influence of climate change.However,considerable uncertainty remains regarding the patterns in species-specific responses to extreme droughts.Here,we conducted a study integrating dendrochronology and remote sensing methods to investigate the mosaic-distributed maple-oak(native)natural forests and poplar plantations(introduced)in the Horqin Sandy Land,Northeast China.We assessed the impacts of extreme droughts on tree performances by measuring interannual variations in radial growth and vegetation index.The results showed that precipitation and self-calibrated palmer drought severity index(scPDSI)are the major factors influencing tree-ring width index(RWI)and normalized difference vegetation index(NDVI).The severe droughts between 2000 and 2004 resulted in reduced RWI in the three studied tree species as well as led to NDVI reductions in both the maple-oak natural forests and the poplar plantations.The RWI reached the nadir during the2000-2004 severe droughts and remained at low levels two years after the severe drought,creating a legacy effect.In contrast to the lack of significant correlation between RWI and scPDSI,NDVI exhibited a significant positive correlation with scPDSI indicating the greater sensitivity of canopy performance to droughts than radial growth.Furthermore,interspecific differences in RWI and NDVI responses were observed,with the fast-growing poplar species experiencing a more significant RWI decrease and more negative NDVI anomaly during severe droughts than native species,highlighting the species-specific trade-offs between drought resilience and growth rate.This study emphasizes the importance of combining tree-level radial growth with landscape-scale canopy remote sensing to understand forest resilience and response.Our study improves our understanding of forest responses to extreme drought and highlights species differences in climate responses,offering crucial insights for optimizing species selection in sustainable afforestation and forest management in water-limited regions under the influence of climate change.展开更多
Drought is a recurring dry condition with below-normal precipitation and is often associated with warm temperatures or heatwaves. A drought event can develop slowly over several weeks or suddenly within days, commonly...Drought is a recurring dry condition with below-normal precipitation and is often associated with warm temperatures or heatwaves. A drought event can develop slowly over several weeks or suddenly within days, commonly under abnormal atmospheric conditions(e.g., quasi-stationary high-pressure systems), and can persist for weeks, months, or even years.展开更多
With the precipitation data of 113 stations in East China during the last 50 years,the characteristics of the precipitation,including Precipitation Concentration Degree (PCD) and Precipitation Concentration Period (PC...With the precipitation data of 113 stations in East China during the last 50 years,the characteristics of the precipitation,including Precipitation Concentration Degree (PCD) and Precipitation Concentration Period (PCP) and their tendencies,are analyzed.The results show that the PCD in the northern part of the region is markedly higher than that in the southern part,but the PCP in the south is much earlier than that in the north by about one and a half months,which displays significant regional differences in precipitation.With the global warming,precipitation over East China shows an increasing tendency,but PCD displays a trend that is neither increasing nor decreasing.At the same time,the PCP is later than before,which can be mainly found in Jiangxi and southern Henan provinces.As a result,there are strong associations between the precipitation,PCD and PCP,which can be shown in the years with more precipitation,stronger PCD and later-than-usual PCP.In a word,the abnormal distribution of precipitation,PCP,and PCD over East China results in more extreme events of precipitation and more droughts and floods.展开更多
The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricte...The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.展开更多
Proposed are a set of new regional flood/drought indices and a scheme of grading their severity whereby 1951-2000 summer wet/dry events are investigated for North China (NC) in terms of 160 station monthly precipitati...Proposed are a set of new regional flood/drought indices and a scheme of grading their severity whereby 1951-2000 summer wet/dry events are investigated for North China (NC) in terms of 160 station monthly precipitation data from NCC (China National Center of Climate).Results suggest that 7 heavy droughts during 1951-2000 are 1965,1968,1972,1980,1983,1997 and 1999,while 6 heavy floods are 1954,1956,1959,1964,1973 and 1996. Based on 1951-2000 summer flood/drought severity graded by the new scheme,atmospheric circulation characteristics associated with the disasters over the NC are addressed in terms of monthly NCEP (National Centers for Environmental Prediction) reanalysis of geopotential heights,winds,surface temperature and PW (precipitable water).Evidences suggest that prominent anomalies benefiting to the heavy droughts occur over the Northern Hemisphere.The variations over middle-high latitudes especially the negative ones on Ural Mountain to western Siberia deepen the normal trough there and are indicative of stronger than normal cold air activity. At middle latitudes,remarkable positive anomalies present on the south to Baikal lead to the fact that the normal ridge shifts eastward over NC concomitant with anomaly sinking motion in the whole troposphere,which is helpful for the maintenance of the continent high.And the opposed ones over Korea and Japan force the trough moving eastward running against northwestward shifting of the western Pacific subtropical high.In addition,the anomaly west-east pressure gradient at middle latitudes profits northerly flow there.The southerly monsoon flow at low levels is weaker than normal with weak East Asian summer monsoon,and the related water vapor transportation is also weak with deficit PW over NC.Besides,sea surface temperature (SST) rises in the equatorial eastern and central Pacific and associated convective region moves to the east accordingly companied with weak Walker circulation in the droughts.And the opposed situations will occur during the floods.展开更多
Using the 1970-2005 annual precipitation and evaporation data at 80 gauge stations across Hunan province,this work analyzes the spatial distribution and variation tendency of the local droughts and floods using linear...Using the 1970-2005 annual precipitation and evaporation data at 80 gauge stations across Hunan province,this work analyzes the spatial distribution and variation tendency of the local droughts and floods using linear regression,wavelet analysis,abrupt change,clusters,Empirical Orthogonal Function (EOF) and rotated EOF (REOF).Results show that there are four dry areas and three wet areas in Hunan.The whole province exhibits a moistening trend except some small areas in western,eastern and southern Hunan.The most prominent feature of annual precipitation is that the whole province basically displays a consistent variation tendency,as far as the dominant EOF mode is concerned.In addition,the spatial features of the other EOF modes include dry-wet differences,e.g.wet (or dry) in the north versus dry (or wet) in the south,wet (or dry) in the center and dry (or wet) in the surrounding areas.The distribution of the ratios of evaporation to precipitation exhibits both common features as well as spatial differences,which can be classified into four types:South Hunan,North Hunan,Northeast Hunan,and Central Hunan.There is an abrupt change from dry to wet patterns in the early 1990s.Generally,the drought-flood distribution presents variations of three periods.In the late 2000s,Hunan province will be in a period of drought,followed by a period of flood.展开更多
To comprehensively investigate characteristics of summer droughts and floods in the Yangtze River valley, a meteorological and hydrological coupling index (MHCI) was developed using meteorological and hydro- logical...To comprehensively investigate characteristics of summer droughts and floods in the Yangtze River valley, a meteorological and hydrological coupling index (MHCI) was developed using meteorological and hydro- logical data. The results indicate that: (1) in representing drought/flood information for the Yangtze River valley, the MHCI can reflect composite features of precipitation and hydrological observations; (2) compre- hensive analysis of the interannual phase difference of the precipitation and hydrological indices is important to recognize and predict annual drought/flood events along the valley; the hydrological index contributes more strongly to nonlinear and continuity features that indicate transition from long-term drought to flood conditions; (3) time series of the MHCI from 1960-2009 are very effective and sensitive in reflecting annual drought/flood characteristics, i.e. there is more rainfall or typical flooding in the valley when the MHCI is positive, and vice versa; and (4) verification of the MHCI indicates that there is significant correlation between precipitation and hydrologic responses in the valley during summer; the correlation coefficient was found to reach 0.82, exceeding the 0.001 significance level.展开更多
It has been shown by the observed data that during the early 1990′s, the severe disastrous climate occurred in East Asia. In the summer of 1991, severe flood occurred in the Yangtze River and the Huaihe River basin o...It has been shown by the observed data that during the early 1990′s, the severe disastrous climate occurred in East Asia. In the summer of 1991, severe flood occurred in the Yangtze River and the Huaihe River basin of China and in South Korea, and it also appeared in South Korea in the summer of 1993. However, in the summer of 1994, a dry and hot summer was caused in the Huaihe River basin of China and in R. O. K.. In order to investigate the seasonal predictability of the summer droughts and floods during the early 1990′s in East Asia, the seasonal prediction experiments of the summer droughts and floods in the summers of 1991-1994 in East Asia have been made by using the Institute of Atmopsheric Physics-Two-Level General Circulation Model (IAP-L2 AGCM), the IAP-Atmosphere/Ocean Coupled Model (IAP-CGCM) and the IAP-L2 AGCM including a filtering scheme, respectively. Compared with the observational facts, it is shown that the IAP-L2 AGCM or IAP-CGCM has some predictability for the summer droughts and floods during the early 1990′s in East Asia, especially for the severe droughts and floods in China and R. O. K.. In this study, a filtering scheme is used to improve the seasonal prediction experiments of the summer droughts and floods during the early 1990′s in East Asia. The predicted results show that the filtering scheme to remain the planetary-scale disturbances is an effective method for the improvement of the seasonal prediction of the summer droughts and floods in East Asia.展开更多
The impacts of climate change on the discharge regimes in New Brunswick (Canada) were analyzed, using artificial neural network models. Future climate data were extracted from the Canadian Coupled General Climate Mode...The impacts of climate change on the discharge regimes in New Brunswick (Canada) were analyzed, using artificial neural network models. Future climate data were extracted from the Canadian Coupled General Climate Model (CGCM3.1) under the greenhouse gas emission scenarios B1 and A2 defined by the Intergovernmental Panel on Climate Change (IPCC). The climate change fields (temperatures and precipitation) were downscaled using the delta change approach. Using the artificial neural network, future river discharge was predicted for selected hydrometric stations. Then, a frequency analysis was carried out using the Generalized Extreme Value (GEV) distribution function, where the parameters of the distribution were estimated using L-moments method. Depending on the scenario and the time slice used, the increase in low return floods was about 30% and about 15% for higher return floods. Low flows showed increases of about 10% for low return droughts and about 20% for higher return droughts. An important part of the design process using frequency analysis is the estimation of future change in floods or droughts under climate scenarios at a given site and for specific return periods. This was carried out through the development of Regional Climate Index (RCI), linking future floods and droughts to their frequencies under climate scenarios B1 and A2.展开更多
The research analyzed characters of rice/wheat growth and yield structure in Puyang and explored the effects of droughts and floods on the crops. The re-sults showed that droughts and floods had significant effects on...The research analyzed characters of rice/wheat growth and yield structure in Puyang and explored the effects of droughts and floods on the crops. The re-sults showed that droughts and floods had significant effects on crop growth and yield. In Puyang, the relieving and prevention technology of the disasters is con-cluded. Specifical y, it is recommended to make ful use of agricultural climate re-sources in a rational way and select suitable crop varieties according to climate and disaster characters, fol owed by timely sowing and scientific crop arrangement. What's more, ploughing should proceed in deeper soil layers and management measures should be optimized to reduce the effects of disasters on crops. In addi-tion to that, disaster index system should be reinforced in terms of establishment, monitoring, warning and prevention to lay scientific foundations and provide refer-ences for safe crop production and preventing and reducing disasters.展开更多
Increases in the frequency of extreme weather and climate events and the severity of their impacts on the natural environment and society have been observed across the globe in recent decades. In addition to natural c...Increases in the frequency of extreme weather and climate events and the severity of their impacts on the natural environment and society have been observed across the globe in recent decades. In addition to natural climate variability and greenhouse-induced climate change, extreme weather and climate events produce the most pronounced impacts. In this paper, the climate of three island countries in the Western Pacific: Fiji, Samoa and Tuvalu, has been analysed. Warming trends in annual average maximum and minimum temperatures since the 1950s have been identified, in line with the global warming trend. We present recent examples of extreme weather and climate events and their impacts on the island countries in the Western Pacific: the 2011 drought in Tuvalu, the 2012 floods in Fiji and a tropical cyclone, Evan, which devastated Samoa and Fiji in December 2012. We also relate occurrences of the extreme weather and climate events to phases of the El Niño-Southern Oscillation (ENSO) phenomenon. The impacts of such natural disasters on the countries are severe and the costs of damage are astronomical. In some cases, climate extremes affect countries to such an extent that governments declare a national state of emergency, as occurred in Tuvalu in 2011 due to the severe drought’s impact on water resources. The projected increase in the frequency of weather and climate extremes is one of the expected consequences of the observed increase in anthropogenic greenhouse gas concentration and will likely have even stronger negative impacts on the natural environment and society in the future. This should be taken into consideration by authorities of Pacific Island Countries and aid donors when developing strategies to adapt to the increasing risk of climate extremes. Here we demonstrate that the modern science of seasonal climate prediction is well developed, with current dynamical climate models being able to provide skilful predictions of regional rainfall two-three months in advance. The dynamic climate model-based forecast products are now disseminated to the National Meteorological Services of 15 island countries in the Western Pacific through a range of web-based information tools. We conclude with confidence that seasonal climate prediction is an effective solution at the regional level to provide governments and local communities of island nations in the Western Pacific with valuable assistance for informed decision making for adaptation to climate variability and change.展开更多
The spatial distribution of summer precipitation anomalies over eastern China often shows a dipole pattern,with anti-phased precipitation anomalies between southern China and northern China,known as the“southern floo...The spatial distribution of summer precipitation anomalies over eastern China often shows a dipole pattern,with anti-phased precipitation anomalies between southern China and northern China,known as the“southern flooding and northern drought”(SF-ND)pattern.In 2015,China experienced heavy rainfall in the south and the worst drought since 1979 in the north,which caused huge social and economic losses.Using reanalysis data,the atmospheric circulation anomalies and possible mechanisms related to the summer precipitation anomalies in 2015 were examined.The results showed that both El Niño and certain atmospheric teleconnections,including the Pacific Japan/East Asia Pacific(PJ/EAP),Eurasia pattern(EU),British–Baikal Corridor pattern(BBC),and Silk Road mode(SR),contributed to the dipole pattern of precipitation anomalies.The combination of these factors caused a southwards shift of the western Pacific subtropical high(WPSH)and a weakening of the East Asian summer monsoon.Consequently,it was difficult for the monsoon front and associated rain band to migrate northwards,which meant that less precipitation occurred in northern China while more precipitation occurred in southern China.This resulted in the SF-ND event.Moreover,further analysis revealed that global sea surface temperature anomalies(SSTAs)or sea-ice anomalies were key to stimulating these atmospheric teleconnections.展开更多
With the extreme drought(flood)event in southern China from July to August in 2022(1999)as the research object,based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from ...With the extreme drought(flood)event in southern China from July to August in 2022(1999)as the research object,based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from July to August in 1961-2022,it is found that there are significant differences in the characteristics of the vertically integrated moisture flux(VIMF)anomaly circulation pattern and the VIMF convergence(VIMFC)anomaly in southern China in drought and flood years,and the VIMFC,a physical quantity,can be regarded as an indicative physical factor for the"strong signal"of drought and flood in southern China.Specifically,in drought years,the VIMF anomaly in southern China is an anticyclonic circulation pattern and the divergence characteristics of the VIMFC are prominent,while those are opposite in flood years.Based on the SST anomaly in the typical draught year of 2022 in southern China and the SST deviation distribution characteristics of abnormal draught and flood years from 1961 to 2022,five SST high impact areas(i.e.,the North Pacific Ocean,Northwest Pacific Ocean,Southwest Pacific Ocean,Indian Ocean,and East Pacific Ocean)are selected via the correlation analysis of VIMFC and the global SST in the preceding months(May and June)and in the study period(July and August)in 1961-2022,and their contributions to drought and flood in southern China are quantified.Our study reveals not only the persistent anomalous variation of SST in the Pacific and the Indian Ocean but also its impact on the pattern of moisture transport.Furthermore,it can be discovered from the positive and negative phase fitting of SST that the SST composite flow field in high impact areas can exhibit two types of anomalous moisture transport structures that are opposite to each other,namely an anticyclonic(cyclonic)circulation pattern anomaly in southern China and the coastal areas of east China.These two types of opposite anomalous moisture transport structures can not only drive the formation of drought(flood)in southern China but also exert its influence on the persistent development of the extreme weather.展开更多
基金This research was financially supported by the General Project of Technical Innovation and Application Demonstration in Chongqing,China[grant number cstc2018jscx-msybX0165]the Special Fund for the Development of Key Technology in Weather Forecasting of the China Meteorological Administration[grant number YBGJXM(2018)04-08]the National Natural Science Foundation of China[grant number 41875111].
文摘This study presents a detailed analysis of the asymmetric relationships between the warm/cold phase of the El Ni?o–Southern Oscillation and the typical flood/drought years in summer over Chongqing.Furthermore,its underpinning mechanisms are also explored.The results show that:(1)El Ni?o and La Ni?a have an asymmetric influence on summer precipitation in the following year over Chongqing.Generally,the composite atmospheric circulation anomalies for El Ni?o years are consistent with the composite results for typical flood years in summer over Chongqing,which indicates a tight link between typical flood years in summer over Chongqing and El Ni?o events.However,the relationship between typical drought years in summer over Chongqing and La Ni?a events is not significant.(2)From winter to the following summer,the extent of positive SST anomalies in the equatorial eastern Pacific associated with typical flood years in summer over Chongqing shrinks,whereas in the tropical Indian Ocean,the extent slightly expands.This trend indicates that the impact of El Ni?o on typical flood years in summer over Chongqing is maintained through the‘relay effect’of SSTs in the tropical Indian Ocean,which is the result of a lagged response of positive SST anomalies in the tropical Indian Ocean to El Ni?o events in winter.
基金Under the auspices of the National Social Science Foundation of China (No.19CGL045)。
文摘Mastering the pattern of food loss caused by droughts and floods aids in planning the layout of agricultural production,determining the scale of drought and flood control projects,and reducing food loss.The Standardized Precipitation Evapotranspiration Index is calculated using monthly meteorological data from 1984 to 2020 in Shandong Province of China and is used to identify the province’s drought and flood characteristics.Then,food losses due to droughts and floods are estimated separately from disaster loss data.Finally,the relationship between drought/flood-related factors and food losses is quantified using methods such as the Pearson correlation coefficient and linear regression.The results show that:1)there is a trend of aridity in Shandong Province,and the drought characteristic variables are increasing yearly while flood duration and severity are decreasing.2)The food losses caused by droughts in Shandong Province are more than those caused by floods,and the area where droughts and floods occur frequently is located in Linyi City.3)The impact of precipitation on food loss due to drought/flood is significant,followed by potential evapotranspiration and temperature.4)The relationship between drought and flood conditions and food losses can be precisely quantified.The accumulated drought duration of one month led to 1.939×10^(4)t of grain loss,and an increase in cumulative flood duration of one month resulted in1.134×10^(4)t of grain loss.If the cumulative drought severity and average drought peak increased by one unit,food loss due to drought will increase by 1.562×10^(4)t and 1.511×10^(6)t,respectively.If the cumulative flood severity and average flood peak increase by one unit,food loss will increase by 8.470×103t and 1.034×10^(6)t,respectively.
文摘Based on the data of annual average precipitation in Deyang area and its five stations (Mianzhu, Deyang, Zhongjiang, Shifang and Guanghan) from 1984 to 2013, the annual precipitation anomaly percentage was calculated, and then the flood and drought situation in Deyang area was graded to discuss the variation characteristics of droughts and floods in the past 30 years. The results show that the cycle of droughts and floods in Deyang was about 3-5 a. The precipitation anomaly percentage indicates that the climate in Deyang area of Sichuan tended to be dry slowly in the past 30 years, and Deyang gradually entered a dry and warm period.
基金the financial support received from the U.S. Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA), USA (Grant No.2017-67003-26057) via an interagency partnership between USDA-NIFAthe National Science Foundation (NSF) on the research program Innovations at the Nexus of Food, Energy and Water Systemsfunded by the Ministry of Education, Government of India through the Scheme for Promotion of Academic and Research Collaboration (SPARC) project grant (SPARC/2018-2019/P1080/SL)。
文摘Climate change is expected to have long-term impacts on drought and wildfire risks in Oregon as summers continue to become warmer and drier. This paper investigates the projected changes in drought characteristics and drought propagation in the Umatilla River Basin in northeastern Oregon for mid-century(2030–2059) and late-century(2070–2099) climate scenarios. Drought characteristics for projected climates were determined using downscaled CMIP5 climate datasets from ten climate models and Soil and Water Assessment Tool to simulate effects on hydrologic processes. Short-term(three months) drought characteristics(frequency, duration, and severity) were analyzed using four drought indices, including the Standardized Precipitation Index(SPI-3), Standardized Precipitation-Evapotranspiration Index(SPEI-3), Standardized Streamflow Index(SSI-3), and the Standardized Soil Moisture Index(SSMI-3). Results indicate that short-term meteorological droughts are projected to become more prevalent, with up to a 20% increase in the frequency of SPI-3drought events. Short-term hydrological droughts are projected to become more frequent(average increase of 11% in frequency of SSI-3 drought events), more severe, and longer in duration(average increase of 8% for short-term droughts).Similarly, short-term agricultural droughts are projected to become more frequent(average increase of 28% in frequency of SSMI-3 drought events) but slightly shorter in duration(average decrease of 4%) in the future. Historically, drought propagation time from meteorological to hydrological drought is shorter than from meteorological to agricultural drought in most sub-basins. For the projected climate scenarios, the decrease in drought propagation time will likely stress the timing and capacity of water supply in the basin for irrigation and other uses.
基金supported by Ministry of Science and Technology of China (Grant No. 2018YFA0606501)National Natural Science Foundation of China (Grant No. 42075037)+1 种基金Key Laboratory Open Research Program of Xinjiang Science and Technology Department (Grant No. 2022D04009)the National Key Scientific and Technological Infrastructure project “Earth System Numerical Simulation Facility” (EarthLab)。
文摘Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,reasonable drought simulations have remained a challenge, and the related performances of the current state-of-the-art Coupled Model Intercomparison Project phase 6(CMIP6) models remain unknown. Here, both the strengths and weaknesses of CMIP6 models in simulating droughts and corresponding hydrothermal conditions in drylands are assessed.While the general patterns of simulated meteorological elements in drylands resemble the observations, the annual precipitation is overestimated by ~33%(with a model spread of 2.3%–77.2%), along with an underestimation of potential evapotranspiration(PET) by ~32%(17.5%–47.2%). The water deficit condition, measured by the difference between precipitation and PET, is 50%(29.1%–71.7%) weaker than observations. The CMIP6 models show weaknesses in capturing the climate mean drought characteristics in drylands, particularly with the occurrence and duration largely underestimated in the hyperarid Afro-Asian areas. Nonetheless, the drought-associated meteorological anomalies, including reduced precipitation, warmer temperatures, higher evaporative demand, and increased water deficit conditions, are reasonably reproduced. The simulated magnitude of precipitation(water deficit) associated with dryland droughts is overestimated by 28%(24%) compared to observations. The observed increasing trends in drought fractional area,occurrence, and corresponding meteorological anomalies during 1980–2014 are reasonably reproduced. Still, the increase in drought characteristics, associated precipitation and water deficit are obviously underestimated after the late 1990s,especially for mild and moderate droughts, indicative of a weaker response of dryland drought changes to global warming in CMIP6 models. Our results suggest that it is imperative to employ bias correction approaches in drought-related studies over drylands by using CMIP6 outputs.
基金supported by the National Natural Science Foundation of China(Nos.32220103010,32192431,31722013)the National Key R&D Program of China(Nos.2023YFF1304201,2020YFA0608100)+1 种基金the Major Program of Institute of Applied EcologyChinese Academy of Sciences(No.IAEMP202201)。
文摘Extreme droughts are anticipated to have detrimental impacts on forest ecosystems,especially in water-limited regions,due to the influence of climate change.However,considerable uncertainty remains regarding the patterns in species-specific responses to extreme droughts.Here,we conducted a study integrating dendrochronology and remote sensing methods to investigate the mosaic-distributed maple-oak(native)natural forests and poplar plantations(introduced)in the Horqin Sandy Land,Northeast China.We assessed the impacts of extreme droughts on tree performances by measuring interannual variations in radial growth and vegetation index.The results showed that precipitation and self-calibrated palmer drought severity index(scPDSI)are the major factors influencing tree-ring width index(RWI)and normalized difference vegetation index(NDVI).The severe droughts between 2000 and 2004 resulted in reduced RWI in the three studied tree species as well as led to NDVI reductions in both the maple-oak natural forests and the poplar plantations.The RWI reached the nadir during the2000-2004 severe droughts and remained at low levels two years after the severe drought,creating a legacy effect.In contrast to the lack of significant correlation between RWI and scPDSI,NDVI exhibited a significant positive correlation with scPDSI indicating the greater sensitivity of canopy performance to droughts than radial growth.Furthermore,interspecific differences in RWI and NDVI responses were observed,with the fast-growing poplar species experiencing a more significant RWI decrease and more negative NDVI anomaly during severe droughts than native species,highlighting the species-specific trade-offs between drought resilience and growth rate.This study emphasizes the importance of combining tree-level radial growth with landscape-scale canopy remote sensing to understand forest resilience and response.Our study improves our understanding of forest responses to extreme drought and highlights species differences in climate responses,offering crucial insights for optimizing species selection in sustainable afforestation and forest management in water-limited regions under the influence of climate change.
文摘Drought is a recurring dry condition with below-normal precipitation and is often associated with warm temperatures or heatwaves. A drought event can develop slowly over several weeks or suddenly within days, commonly under abnormal atmospheric conditions(e.g., quasi-stationary high-pressure systems), and can persist for weeks, months, or even years.
基金National Foundation for Outstanding Young Scientists (40825008)National Natural Science Foundation of China (40975020)Models and Technical Composites for Comprehensive Improvement of Ecological and Environmental Conditions in the Basin of Qinghai Lake (2007BAC30B05-4)
文摘With the precipitation data of 113 stations in East China during the last 50 years,the characteristics of the precipitation,including Precipitation Concentration Degree (PCD) and Precipitation Concentration Period (PCP) and their tendencies,are analyzed.The results show that the PCD in the northern part of the region is markedly higher than that in the southern part,but the PCP in the south is much earlier than that in the north by about one and a half months,which displays significant regional differences in precipitation.With the global warming,precipitation over East China shows an increasing tendency,but PCD displays a trend that is neither increasing nor decreasing.At the same time,the PCP is later than before,which can be mainly found in Jiangxi and southern Henan provinces.As a result,there are strong associations between the precipitation,PCD and PCP,which can be shown in the years with more precipitation,stronger PCD and later-than-usual PCP.In a word,the abnormal distribution of precipitation,PCP,and PCD over East China results in more extreme events of precipitation and more droughts and floods.
基金Under the auspices of National Natural Science Foundation(No.50879028)Open Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of Nanjing Hydraulic Research institute(No.2009491311)+1 种基金Open Research Fund Program of State key Laboratory of Hydroscience and Engineering,Tsinghua University(No.sklhse-2010-A-02)Application Foundation Items of Science and Technology Department of Jilin Province(No.2011-05013)
文摘The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.
基金"National Key Program for Developing Basic Sciences-Research on the Formation Mechanism and Prediction Theory of Severe Climate Disasters in China"G1998040901-3
文摘Proposed are a set of new regional flood/drought indices and a scheme of grading their severity whereby 1951-2000 summer wet/dry events are investigated for North China (NC) in terms of 160 station monthly precipitation data from NCC (China National Center of Climate).Results suggest that 7 heavy droughts during 1951-2000 are 1965,1968,1972,1980,1983,1997 and 1999,while 6 heavy floods are 1954,1956,1959,1964,1973 and 1996. Based on 1951-2000 summer flood/drought severity graded by the new scheme,atmospheric circulation characteristics associated with the disasters over the NC are addressed in terms of monthly NCEP (National Centers for Environmental Prediction) reanalysis of geopotential heights,winds,surface temperature and PW (precipitable water).Evidences suggest that prominent anomalies benefiting to the heavy droughts occur over the Northern Hemisphere.The variations over middle-high latitudes especially the negative ones on Ural Mountain to western Siberia deepen the normal trough there and are indicative of stronger than normal cold air activity. At middle latitudes,remarkable positive anomalies present on the south to Baikal lead to the fact that the normal ridge shifts eastward over NC concomitant with anomaly sinking motion in the whole troposphere,which is helpful for the maintenance of the continent high.And the opposed ones over Korea and Japan force the trough moving eastward running against northwestward shifting of the western Pacific subtropical high.In addition,the anomaly west-east pressure gradient at middle latitudes profits northerly flow there.The southerly monsoon flow at low levels is weaker than normal with weak East Asian summer monsoon,and the related water vapor transportation is also weak with deficit PW over NC.Besides,sea surface temperature (SST) rises in the equatorial eastern and central Pacific and associated convective region moves to the east accordingly companied with weak Walker circulation in the droughts.And the opposed situations will occur during the floods.
基金Project of Key Disciplines of Research of Hunan ProvinceNatural Science Foundation of China (40741002)
文摘Using the 1970-2005 annual precipitation and evaporation data at 80 gauge stations across Hunan province,this work analyzes the spatial distribution and variation tendency of the local droughts and floods using linear regression,wavelet analysis,abrupt change,clusters,Empirical Orthogonal Function (EOF) and rotated EOF (REOF).Results show that there are four dry areas and three wet areas in Hunan.The whole province exhibits a moistening trend except some small areas in western,eastern and southern Hunan.The most prominent feature of annual precipitation is that the whole province basically displays a consistent variation tendency,as far as the dominant EOF mode is concerned.In addition,the spatial features of the other EOF modes include dry-wet differences,e.g.wet (or dry) in the north versus dry (or wet) in the south,wet (or dry) in the center and dry (or wet) in the surrounding areas.The distribution of the ratios of evaporation to precipitation exhibits both common features as well as spatial differences,which can be classified into four types:South Hunan,North Hunan,Northeast Hunan,and Central Hunan.There is an abrupt change from dry to wet patterns in the early 1990s.Generally,the drought-flood distribution presents variations of three periods.In the late 2000s,Hunan province will be in a period of drought,followed by a period of flood.
基金supported by project GYHY201106050the National"973"Program of China under Grant No.2011CB403404,and Project No.2009Y002
文摘To comprehensively investigate characteristics of summer droughts and floods in the Yangtze River valley, a meteorological and hydrological coupling index (MHCI) was developed using meteorological and hydro- logical data. The results indicate that: (1) in representing drought/flood information for the Yangtze River valley, the MHCI can reflect composite features of precipitation and hydrological observations; (2) compre- hensive analysis of the interannual phase difference of the precipitation and hydrological indices is important to recognize and predict annual drought/flood events along the valley; the hydrological index contributes more strongly to nonlinear and continuity features that indicate transition from long-term drought to flood conditions; (3) time series of the MHCI from 1960-2009 are very effective and sensitive in reflecting annual drought/flood characteristics, i.e. there is more rainfall or typical flooding in the valley when the MHCI is positive, and vice versa; and (4) verification of the MHCI indicates that there is significant correlation between precipitation and hydrologic responses in the valley during summer; the correlation coefficient was found to reach 0.82, exceeding the 0.001 significance level.
文摘It has been shown by the observed data that during the early 1990′s, the severe disastrous climate occurred in East Asia. In the summer of 1991, severe flood occurred in the Yangtze River and the Huaihe River basin of China and in South Korea, and it also appeared in South Korea in the summer of 1993. However, in the summer of 1994, a dry and hot summer was caused in the Huaihe River basin of China and in R. O. K.. In order to investigate the seasonal predictability of the summer droughts and floods during the early 1990′s in East Asia, the seasonal prediction experiments of the summer droughts and floods in the summers of 1991-1994 in East Asia have been made by using the Institute of Atmopsheric Physics-Two-Level General Circulation Model (IAP-L2 AGCM), the IAP-Atmosphere/Ocean Coupled Model (IAP-CGCM) and the IAP-L2 AGCM including a filtering scheme, respectively. Compared with the observational facts, it is shown that the IAP-L2 AGCM or IAP-CGCM has some predictability for the summer droughts and floods during the early 1990′s in East Asia, especially for the severe droughts and floods in China and R. O. K.. In this study, a filtering scheme is used to improve the seasonal prediction experiments of the summer droughts and floods during the early 1990′s in East Asia. The predicted results show that the filtering scheme to remain the planetary-scale disturbances is an effective method for the improvement of the seasonal prediction of the summer droughts and floods in East Asia.
文摘The impacts of climate change on the discharge regimes in New Brunswick (Canada) were analyzed, using artificial neural network models. Future climate data were extracted from the Canadian Coupled General Climate Model (CGCM3.1) under the greenhouse gas emission scenarios B1 and A2 defined by the Intergovernmental Panel on Climate Change (IPCC). The climate change fields (temperatures and precipitation) were downscaled using the delta change approach. Using the artificial neural network, future river discharge was predicted for selected hydrometric stations. Then, a frequency analysis was carried out using the Generalized Extreme Value (GEV) distribution function, where the parameters of the distribution were estimated using L-moments method. Depending on the scenario and the time slice used, the increase in low return floods was about 30% and about 15% for higher return floods. Low flows showed increases of about 10% for low return droughts and about 20% for higher return droughts. An important part of the design process using frequency analysis is the estimation of future change in floods or droughts under climate scenarios at a given site and for specific return periods. This was carried out through the development of Regional Climate Index (RCI), linking future floods and droughts to their frequencies under climate scenarios B1 and A2.
文摘The research analyzed characters of rice/wheat growth and yield structure in Puyang and explored the effects of droughts and floods on the crops. The re-sults showed that droughts and floods had significant effects on crop growth and yield. In Puyang, the relieving and prevention technology of the disasters is con-cluded. Specifical y, it is recommended to make ful use of agricultural climate re-sources in a rational way and select suitable crop varieties according to climate and disaster characters, fol owed by timely sowing and scientific crop arrangement. What's more, ploughing should proceed in deeper soil layers and management measures should be optimized to reduce the effects of disasters on crops. In addi-tion to that, disaster index system should be reinforced in terms of establishment, monitoring, warning and prevention to lay scientific foundations and provide refer-ences for safe crop production and preventing and reducing disasters.
文摘Increases in the frequency of extreme weather and climate events and the severity of their impacts on the natural environment and society have been observed across the globe in recent decades. In addition to natural climate variability and greenhouse-induced climate change, extreme weather and climate events produce the most pronounced impacts. In this paper, the climate of three island countries in the Western Pacific: Fiji, Samoa and Tuvalu, has been analysed. Warming trends in annual average maximum and minimum temperatures since the 1950s have been identified, in line with the global warming trend. We present recent examples of extreme weather and climate events and their impacts on the island countries in the Western Pacific: the 2011 drought in Tuvalu, the 2012 floods in Fiji and a tropical cyclone, Evan, which devastated Samoa and Fiji in December 2012. We also relate occurrences of the extreme weather and climate events to phases of the El Niño-Southern Oscillation (ENSO) phenomenon. The impacts of such natural disasters on the countries are severe and the costs of damage are astronomical. In some cases, climate extremes affect countries to such an extent that governments declare a national state of emergency, as occurred in Tuvalu in 2011 due to the severe drought’s impact on water resources. The projected increase in the frequency of weather and climate extremes is one of the expected consequences of the observed increase in anthropogenic greenhouse gas concentration and will likely have even stronger negative impacts on the natural environment and society in the future. This should be taken into consideration by authorities of Pacific Island Countries and aid donors when developing strategies to adapt to the increasing risk of climate extremes. Here we demonstrate that the modern science of seasonal climate prediction is well developed, with current dynamical climate models being able to provide skilful predictions of regional rainfall two-three months in advance. The dynamic climate model-based forecast products are now disseminated to the National Meteorological Services of 15 island countries in the Western Pacific through a range of web-based information tools. We conclude with confidence that seasonal climate prediction is an effective solution at the regional level to provide governments and local communities of island nations in the Western Pacific with valuable assistance for informed decision making for adaptation to climate variability and change.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.41991281,42130613 and 41705073)the UK-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fundthe Jiangsu Collaborative Innovation Center for Climate Change.
文摘The spatial distribution of summer precipitation anomalies over eastern China often shows a dipole pattern,with anti-phased precipitation anomalies between southern China and northern China,known as the“southern flooding and northern drought”(SF-ND)pattern.In 2015,China experienced heavy rainfall in the south and the worst drought since 1979 in the north,which caused huge social and economic losses.Using reanalysis data,the atmospheric circulation anomalies and possible mechanisms related to the summer precipitation anomalies in 2015 were examined.The results showed that both El Niño and certain atmospheric teleconnections,including the Pacific Japan/East Asia Pacific(PJ/EAP),Eurasia pattern(EU),British–Baikal Corridor pattern(BBC),and Silk Road mode(SR),contributed to the dipole pattern of precipitation anomalies.The combination of these factors caused a southwards shift of the western Pacific subtropical high(WPSH)and a weakening of the East Asian summer monsoon.Consequently,it was difficult for the monsoon front and associated rain band to migrate northwards,which meant that less precipitation occurred in northern China while more precipitation occurred in southern China.This resulted in the SF-ND event.Moreover,further analysis revealed that global sea surface temperature anomalies(SSTAs)or sea-ice anomalies were key to stimulating these atmospheric teleconnections.
基金The Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(2019QZKK0105)the Science and Technology Development Fund of the Chinese Academy of Meteorological Sciences(2022KJ022)+2 种基金Special Fund for the Basic Scientific Research Expenses of the Chinese Academy of Meteorological Sciences(2021Z013)the Science and Technology Development Fund of the Chinese Academy of Meteorological Sciences(2022KJ021)Major Projects of the Natural Science Foundation of China(91337000)。
文摘With the extreme drought(flood)event in southern China from July to August in 2022(1999)as the research object,based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from July to August in 1961-2022,it is found that there are significant differences in the characteristics of the vertically integrated moisture flux(VIMF)anomaly circulation pattern and the VIMF convergence(VIMFC)anomaly in southern China in drought and flood years,and the VIMFC,a physical quantity,can be regarded as an indicative physical factor for the"strong signal"of drought and flood in southern China.Specifically,in drought years,the VIMF anomaly in southern China is an anticyclonic circulation pattern and the divergence characteristics of the VIMFC are prominent,while those are opposite in flood years.Based on the SST anomaly in the typical draught year of 2022 in southern China and the SST deviation distribution characteristics of abnormal draught and flood years from 1961 to 2022,five SST high impact areas(i.e.,the North Pacific Ocean,Northwest Pacific Ocean,Southwest Pacific Ocean,Indian Ocean,and East Pacific Ocean)are selected via the correlation analysis of VIMFC and the global SST in the preceding months(May and June)and in the study period(July and August)in 1961-2022,and their contributions to drought and flood in southern China are quantified.Our study reveals not only the persistent anomalous variation of SST in the Pacific and the Indian Ocean but also its impact on the pattern of moisture transport.Furthermore,it can be discovered from the positive and negative phase fitting of SST that the SST composite flow field in high impact areas can exhibit two types of anomalous moisture transport structures that are opposite to each other,namely an anticyclonic(cyclonic)circulation pattern anomaly in southern China and the coastal areas of east China.These two types of opposite anomalous moisture transport structures can not only drive the formation of drought(flood)in southern China but also exert its influence on the persistent development of the extreme weather.