期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Anchoring mechanism and application of hydraulic expansion bolts used in soft rock roadway floor heave control 被引量:20
1
作者 Chang Qingliang Zhou Huaqiang +1 位作者 Xie Zhihong Shen Shiping 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期323-328,共6页
Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expre... Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway. 展开更多
关键词 Hydraulic expansion bolt Anchoring force Soft rock roadway floor heave Shed support
下载PDF
Deformation control of asymmetric floor heave in a deep rock roadway:A case study 被引量:11
2
作者 Sun Xiaoming Wang Dong +2 位作者 Feng Jili Zhang Chun Chen Yanwei 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期799-804,共6页
In order to control asymmetric floor heave in deep rock roadways and deformation around the surrounding rock mass after excavation, in this paper we discuss the failure mechanism and coupling control countermeasures u... In order to control asymmetric floor heave in deep rock roadways and deformation around the surrounding rock mass after excavation, in this paper we discuss the failure mechanism and coupling control countermeasures using the finite difference method (FLAC^3D) combined with comparative analysis and typical engineering application at Xingcun coal mine, It is indicated by the analysis that the simple symmetric support systems used in the past led to destruction of the deep rock roadway from the key zone and resulted in the deformation of asymmetric floor heave in the roadway. Suitable rein- forced support countermeasures are proposed to reduce the deformation of the floor heave and the potential risk during mining. The application shows that the present support technology can he used to better environmental conditions. The countermeasures of asymmetric coupling support can not only effectively reduce the discrepancy deformation at the key area of the surrounding rock mass, hut also effectively control floor heave, which helps realize the integration of support and maintain the stability of the deep rock roadways at Xingcun coal mine. 展开更多
关键词 Deep rock roadway Asymmetric floor heave Numerical simulation Asymmetric reinforced support
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部