Phenotypic plasticity and/or pollinatormediated selection may be responsible for the changes in floral traits of plants when they are forced to live in new conditions. Although the two events could be independent, we ...Phenotypic plasticity and/or pollinatormediated selection may be responsible for the changes in floral traits of plants when they are forced to live in new conditions. Although the two events could be independent, we hypothesized that phenotypic plasticity in floral traits might help to coordinate plant-pollinator interactions and enhance plant reproductive success in changing habitats. To test this hypothesis, we investigated floral traits and pollination on three natural populations of a lousewort(Pedicularis siphonantha) ranging at different elevations, as well as two downward transplanted populations in Shangeri-La County and Deqin County, northwest Yunnan, China. The results indicated that floral traits, i.e. phenology, longevity,display size, corolla tube length and pollen production differed significantly among populations. Moreover,or the two transplanted populations, floral traits diverged from their original populations, but converged to their host populations. Although the phenotypic plasticity in floral traits might be a rapid response to abiotic factor such as warmer environment, the changes in floral traits were found to be well adapted to pollination environment of the host population. Compared with plants of their original habitats in higher elevation, the transplanted individuals advanced flowering time, shortened flower longevity, reduced floral display size and pollen production, received higher visiting frequency and yielded more seeds. These findings suggested that phenotypic plasticity of floral traits might help plants adjust their resource allocation strategy between preand post-pollination stages in response to harsh or temperate conditions, which might correspondingly meet a pollinator-poor or hyphen rich environment.This would be beneficial for the widely-distributed species to adapt to various environmental changes.展开更多
Subject Code:C02With the support by the Chinese Academy of Sciences(CAS),the research team of Plant Environmental Epigenetics led by Prof.He Yuehui(何跃辉)at the Shanghai Center for Plant Stress Biology,CAS and CAS Ce...Subject Code:C02With the support by the Chinese Academy of Sciences(CAS),the research team of Plant Environmental Epigenetics led by Prof.He Yuehui(何跃辉)at the Shanghai Center for Plant Stress Biology,CAS and CAS Center for Excellence of Molecular Plant Sciences,discovered a molecular epigenetic mechanism underlying how winter cold enables plants to flower in spring,which was published in Nature Genetics(2016,48:1527—1534).展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 31370263 and 31770255)
文摘Phenotypic plasticity and/or pollinatormediated selection may be responsible for the changes in floral traits of plants when they are forced to live in new conditions. Although the two events could be independent, we hypothesized that phenotypic plasticity in floral traits might help to coordinate plant-pollinator interactions and enhance plant reproductive success in changing habitats. To test this hypothesis, we investigated floral traits and pollination on three natural populations of a lousewort(Pedicularis siphonantha) ranging at different elevations, as well as two downward transplanted populations in Shangeri-La County and Deqin County, northwest Yunnan, China. The results indicated that floral traits, i.e. phenology, longevity,display size, corolla tube length and pollen production differed significantly among populations. Moreover,or the two transplanted populations, floral traits diverged from their original populations, but converged to their host populations. Although the phenotypic plasticity in floral traits might be a rapid response to abiotic factor such as warmer environment, the changes in floral traits were found to be well adapted to pollination environment of the host population. Compared with plants of their original habitats in higher elevation, the transplanted individuals advanced flowering time, shortened flower longevity, reduced floral display size and pollen production, received higher visiting frequency and yielded more seeds. These findings suggested that phenotypic plasticity of floral traits might help plants adjust their resource allocation strategy between preand post-pollination stages in response to harsh or temperate conditions, which might correspondingly meet a pollinator-poor or hyphen rich environment.This would be beneficial for the widely-distributed species to adapt to various environmental changes.
文摘Subject Code:C02With the support by the Chinese Academy of Sciences(CAS),the research team of Plant Environmental Epigenetics led by Prof.He Yuehui(何跃辉)at the Shanghai Center for Plant Stress Biology,CAS and CAS Center for Excellence of Molecular Plant Sciences,discovered a molecular epigenetic mechanism underlying how winter cold enables plants to flower in spring,which was published in Nature Genetics(2016,48:1527—1534).