Flow profiles are frequently engineered in microfluidic channels for enhanced mixing,reaction control,and material synthesis.Conventionally,flow profiles are engineered by inducing inertial secondary flow to redistrib...Flow profiles are frequently engineered in microfluidic channels for enhanced mixing,reaction control,and material synthesis.Conventionally,flow profiles are engineered by inducing inertial secondary flow to redistribute the streams,which can hardly be reproduced in microfluidic environments with negligible inertial flow.The employed symmetric channel structures also limit the variety of achievable flow profiles.Moreover,each of the flow profiles specifically corresponds to a strictly defined flow condition and cannot be generalized to other flow environments.To address these issues,we present a systematic method to engineer the flow profile using inertialess secondary flow.The flow is manipulated in the Stokes regime by deploying a cascaded series of microsteps with various morphologies inside a microchannel to shape the flow profile.By tuning the shapes of the microsteps,arbitrary outflow profiles can be customized.A numerical profile-transformation program is developed for rapid prediction of the output profiles of arbitrary sequences of predefined microsteps.The proposed method allows the engineering of stable flow profiles,including asymmetric ones,over a wide range of flow conditions for complex microfluidic environmental prediction and design.展开更多
The distribution function and orientation tensor of fiber suspensions in wedge shaped flow field were computed . The results indicate that with time increasing, the fiber orient themselves to flow direction graduall...The distribution function and orientation tensor of fiber suspensions in wedge shaped flow field were computed . The results indicate that with time increasing, the fiber orient themselves to flow direction gradually. At the locations with same pole radii, the angle between fiber orientation and centerline, which occurs with the most probability, decreases with the pole angle increasing . At the locations with same pole angle, the angle between fiber orientation and centerline increases with the pole radii decreasing. The second order tensors get steady more quickly at the points where the velocity g radients are larger. At the locations with same pole angle, the steady values of orientation tensors are identical. At the locations with same pole radii is, streamline becomes flatter as the pole angle decreases.展开更多
An alternative approach to simulating arbitrarily shaped particles submersed in viscous fluid in two dimensions is proposed, obtained by adapting the velocity parameter of the equilibrium distribution function of a st...An alternative approach to simulating arbitrarily shaped particles submersed in viscous fluid in two dimensions is proposed, obtained by adapting the velocity parameter of the equilibrium distribution function of a standard lattice Boltzmann method (LBM). Comparisons of exemplifying simulations to results in the literature validate the approach as well as the convergence analysis. Pressure fluctuations occurring in Ladd's approach are greatly reduced. In comparison with the immersed boundary method, this approach does not require cost intensive interpolations. The parallel efficiency of LBM is retained. An intrinsic momentum transfer is observed during particle-particle collisions. To demonstrate the capa- bilities of the approach, sedimentation of particles of several shapes is simulated despite omitting an explicit particle collision model.展开更多
A series of experiments is conducted to study shallow-water flow in the wake of a sine shaped island. Digital particle imaging velocimetry (DPIV) is used to measure velocities in the turbulent wake behind a sine shap...A series of experiments is conducted to study shallow-water flow in the wake of a sine shaped island. Digital particle imaging velocimetry (DPIV) is used to measure velocities in the turbulent wake behind a sine shaped island for different characteristic coefficients S. Flow streamlines are given for the wake flows. The measured results show that the characteristic coefficient S is uniquely related to the flow pattern around a sine shaped island in a shallow water layer. An S value of approximately 0.20 is the critical value for transition from a vortex street to unsteady flow and a value of approximately 0.40 is the critical value for transition from unsteady flow to steady flow.展开更多
The molten metal is drawn to the alternating magnetic field composed of a 10~30KHz power supply and a non-magnetizer coil,where the molten metal will float(for the sheet/strip billet) or float and be restrained(for th...The molten metal is drawn to the alternating magnetic field composed of a 10~30KHz power supply and a non-magnetizer coil,where the molten metal will float(for the sheet/strip billet) or float and be restrained(for the section bar billet) because of electromagnetic induction.During continuous movement the molten metal is appropriately cooled to keep the afterheat with the upper limited temperature of the hot working and then enters the processing machine,where it is rolled and continuously pressed into materials like the electronic component(for example,the radiator),or enters the program-controlled casting line(at which the metal semisolid slurry is replaced) for the purpose of the casting of mechanical part billets(such as billets for gears and internal and external rings of bearings).The effect of energy saving and income increase is remarkable.展开更多
基金This work was supported by the General Research Fund(17306315,17304017,and 17305518)and Research Impact Fund(R7072-18)from the Research Grants Council(RGC)of Hong Kong,Chinathe Excellent Young Scientists Fund(Hong Kong and Macao)(21922816)from the National Natural Science Foundation of China(NSFC)+1 种基金the Seed Funding for Strategic Interdisciplinary Research Scheme 2017/18 from the University of Hong Kongas well as the Sichuan Science and Technology Program(2018JZ0026).
文摘Flow profiles are frequently engineered in microfluidic channels for enhanced mixing,reaction control,and material synthesis.Conventionally,flow profiles are engineered by inducing inertial secondary flow to redistribute the streams,which can hardly be reproduced in microfluidic environments with negligible inertial flow.The employed symmetric channel structures also limit the variety of achievable flow profiles.Moreover,each of the flow profiles specifically corresponds to a strictly defined flow condition and cannot be generalized to other flow environments.To address these issues,we present a systematic method to engineer the flow profile using inertialess secondary flow.The flow is manipulated in the Stokes regime by deploying a cascaded series of microsteps with various morphologies inside a microchannel to shape the flow profile.By tuning the shapes of the microsteps,arbitrary outflow profiles can be customized.A numerical profile-transformation program is developed for rapid prediction of the output profiles of arbitrary sequences of predefined microsteps.The proposed method allows the engineering of stable flow profiles,including asymmetric ones,over a wide range of flow conditions for complex microfluidic environmental prediction and design.
基金Project supported by the National Natural Science Foundation for Outstanding Youth of China. (Grant No: 19925210)
文摘The distribution function and orientation tensor of fiber suspensions in wedge shaped flow field were computed . The results indicate that with time increasing, the fiber orient themselves to flow direction gradually. At the locations with same pole radii, the angle between fiber orientation and centerline, which occurs with the most probability, decreases with the pole angle increasing . At the locations with same pole angle, the angle between fiber orientation and centerline increases with the pole radii decreasing. The second order tensors get steady more quickly at the points where the velocity g radients are larger. At the locations with same pole angle, the steady values of orientation tensors are identical. At the locations with same pole radii is, streamline becomes flatter as the pole angle decreases.
文摘An alternative approach to simulating arbitrarily shaped particles submersed in viscous fluid in two dimensions is proposed, obtained by adapting the velocity parameter of the equilibrium distribution function of a standard lattice Boltzmann method (LBM). Comparisons of exemplifying simulations to results in the literature validate the approach as well as the convergence analysis. Pressure fluctuations occurring in Ladd's approach are greatly reduced. In comparison with the immersed boundary method, this approach does not require cost intensive interpolations. The parallel efficiency of LBM is retained. An intrinsic momentum transfer is observed during particle-particle collisions. To demonstrate the capa- bilities of the approach, sedimentation of particles of several shapes is simulated despite omitting an explicit particle collision model.
基金Supported by the National Natural Science Foundationof China (No. 5 96 790 2 3) and the Post- DoctoralFoundation of China
文摘A series of experiments is conducted to study shallow-water flow in the wake of a sine shaped island. Digital particle imaging velocimetry (DPIV) is used to measure velocities in the turbulent wake behind a sine shaped island for different characteristic coefficients S. Flow streamlines are given for the wake flows. The measured results show that the characteristic coefficient S is uniquely related to the flow pattern around a sine shaped island in a shallow water layer. An S value of approximately 0.20 is the critical value for transition from a vortex street to unsteady flow and a value of approximately 0.40 is the critical value for transition from unsteady flow to steady flow.
文摘The molten metal is drawn to the alternating magnetic field composed of a 10~30KHz power supply and a non-magnetizer coil,where the molten metal will float(for the sheet/strip billet) or float and be restrained(for the section bar billet) because of electromagnetic induction.During continuous movement the molten metal is appropriately cooled to keep the afterheat with the upper limited temperature of the hot working and then enters the processing machine,where it is rolled and continuously pressed into materials like the electronic component(for example,the radiator),or enters the program-controlled casting line(at which the metal semisolid slurry is replaced) for the purpose of the casting of mechanical part billets(such as billets for gears and internal and external rings of bearings).The effect of energy saving and income increase is remarkable.