期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
ANALYSIS OF OSCILLATORY FLOW IN CONSIDERATION OF A PLASMA LAYER IN ARTERIAL STENOSES
1
作者 王长斌 柳兆荣 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第12期1127-1135,共9页
This paper presents the influences of plasma layer on the oscillatory flow inarterial stenosis. The analysis demonstrates that the existence of the plasma layer mayobviously change the characteristics of flow such as ... This paper presents the influences of plasma layer on the oscillatory flow inarterial stenosis. The analysis demonstrates that the existence of the plasma layer mayobviously change the characteristics of flow such as velocity-profiles, longitudinalimpedance and pressure gradient, but hardly change the phase of longitudinalimpedance and pressure gradient. Besides. such influences vary with a and degree ofstenosis. These analyses have Special physiological significance in blood circulationsystem. 展开更多
关键词 STENOSIS plasma layer tubular pinch effect oscillatory flow longitudinal impedance smooth effects
下载PDF
Dynamic Model for the Z Accelerator Vacuum Section Based on Transmission Line Code
2
作者 呼义翔 邱爱慈 +10 位作者 王亮平 黄涛 丛培天 张信军 李岩 曾正中 孙铁平 雷天时 吴撼宇 郭宁 韩娟娟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第5期631-636,共6页
The transmission-line-circuit model of the Z accelerator, developed originally by W. A. STYGAR, P. A. CORCORAN, et al., is revised. The revised model uses different calculations for the electron loss and flow impedanc... The transmission-line-circuit model of the Z accelerator, developed originally by W. A. STYGAR, P. A. CORCORAN, et al., is revised. The revised model uses different calculations for the electron loss and flow impedance in the magnetically insulated transmission line system of the Z accelerator before and after magnetic insulation is established. By including electron pressure and zero electric field at the cathode, a closed set of equations is obtained at each time step, and dynamic shunt resistance (used to represent any electron loss to the anode) and flow impedance are solved, which have been incorporated into the transmission line code for simulations of the vacuum section in the Z accelerator. Finally, the results are discussed in comparison with earlier findings to show the effectiveness and limitations of the model. 展开更多
关键词 electron emission flow impedance magnetically insulated transmission line(MITL) space-charge-limited (SCL) flow
下载PDF
Seismic sedimentology of conglomeratic sandbodies in lower third member of Shahejie Formation (Palaeogene) in Shengtuo area, East China 被引量:2
3
作者 袁勇 张金亮 +2 位作者 李存磊 孟宁宁 李岩 《Journal of Central South University》 SCIE EI CAS 2014年第12期4630-4639,共10页
The sand-conglomerate fans are the major depositional systems in the lower third member of Shahejie Formation in Shengtuo area, which formed in the deep lacustrine environment characterized by steep slope gradient, ne... The sand-conglomerate fans are the major depositional systems in the lower third member of Shahejie Formation in Shengtuo area, which formed in the deep lacustrine environment characterized by steep slope gradient, near sources and intensive tectonic activity. This work was focused on the sedimentary feature of the glutenite segment to conduct the seismic sedimentology research. The near-shore subaqueous fans and its relative gravity channel and slump turbidite fan depositions were identified according to observation and description of cores combining with the numerous data of seismic and logging. Then, the depositional model was built depending on the analysis of palaeogeomorphology. The seismic attributes which are related to the hydrocarbon but relative independent were chosen to conduct the analysis, the reservoir area of the glutenite segment was found performing a distribution where the amplitude value is relatively higher, and finally the RMS amplitude attribute was chosen to conduct the attribute predicting. At the same time, the horizontal distribution of the sedimentary facies was analyzed qualitatively. At last, the sparse spike inversion method was used to conduct the acoustic impedance inversion, and the inversion result can distinguish glutenite reservoir which is greater than 5 m. This method quantitatively characterizes the distribution area of the favorable reservoir sand. 展开更多
关键词 Shengtuo area near-shore subaqueous fan gravity flow channel slump turbidite fan sedimentary mode acoustic impedance inversion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部