期刊文献+
共找到95篇文章
< 1 2 5 >
每页显示 20 50 100
Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing 被引量:3
1
作者 李铮 史志伟 +3 位作者 杜海 孙琪杰 魏晨瑶 耿玺 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第11期116-125,共10页
Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a fl... Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a flying wing model's aerodynamic characteristics. The aerodynamic forces and moments are studied by means of experiment and numerical simulation. The numerical simulation results are in good agreement with experiment results. Both results indicate that the NS-DBD plasma actuators have negligible effect on aerodynamic forces and moment at the angles of attack smaller than 16-. However, significant changes can be achieved with actuation when the model's angle of attack is larger than 16° where the flow separation occurs. The spatial flow field structure results from numerical simulation suggest that the volumetric heat produced by NS-DBD plasma actuator changes the local temperature and density and induces several vortex structures, which strengthen the mixing of the shear layer with the main flow and delay separation or even reattach the separated flow. 展开更多
关键词 nanosecond dielectric barrier discharge flying wing aircraft flow separation control
下载PDF
Flow Separation and Vortex Dynamics in Waves Propagating over A Submerged Quartercircular Breakwater 被引量:2
2
作者 JIANG Xue-lian YANG Tian +1 位作者 ZOU Qing-ping GU Han-bin 《China Ocean Engineering》 SCIE EI CSCD 2018年第5期514-523,共10页
The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model... The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation,therefore, scour on the leeside of the breakwater. 展开更多
关键词 submerged quartercircular breakwater cnoidal wave flow separation vortex dynamics SCOUR
下载PDF
A Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows 被引量:2
3
作者 Shuaibin HAN Shuhai ZHANG Hanxin ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第7期1007-1018,共12页
The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theor... The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theory of unsteady separation for two-dimensional flows. Journal of Fluid Mechanics, 512, 257-311 (2004)). By analyzing the distribution of the finite-time Lyapunov exponent (FTLE) along the no-slip wall, it can be found that the periodic separation takes place at the point of the zero FTLE. This new criterion is verified with an analytical solution of the separation bubble and a numerical simulation of lid-driven cavity flows. 展开更多
关键词 Lagrangian criterion unsteady flow separation finite-time Lyapunov ex-ponent(FTLE) two-dimensional periodic flow
下载PDF
FLUID FLOW SEPARATION CHARACTER ON NOVEL HYBRID JOURNAL BEARING 被引量:4
4
作者 CHEN Shujiang LU Changhou LI Lei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期540-543,共4页
The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and th... The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and the simulation is carried out by using finite difference method. The results show that the lubricant flow status and end leakage quantity are greatly influenced by spiral angle,and that the rotating speed has little influence on the flow status. With advisable geometry design, the separation of lubricant between different oil wedges can be obtained, which can decrease the temperature rise effectively. 展开更多
关键词 Fluid flow separation character Spiral oil wedge flow statusHybrid journal bearing
下载PDF
Flow separation control over an airfoil using continuous alternating current plasma actuator 被引量:1
5
作者 郑建国 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期346-355,共10页
The flow separation control over an NACA 0015 airfoil using continuous alternating current(AC)dielectric barrier discharge(DBD)plasma actuator is investigated experimentally and numerically.This work is intended to re... The flow separation control over an NACA 0015 airfoil using continuous alternating current(AC)dielectric barrier discharge(DBD)plasma actuator is investigated experimentally and numerically.This work is intended to report some observations made from our experiment,to which little attention is paid in the previous studies,but which is thought to be important to the understanding of control of complex flow separation with AC DBD.To this end,the response of separated flow to AC plasma actuation is visualized through the time-resolved particle image velocimetry(PIV)measurement,whereas numerical simulation is carried out to complement the experiment.The flow control process at chord-based Reynolds number(Re)of 3.31×105 is investigated.It is found that the response of external flow to plasma forcing is delayed for up to tens of milliseconds and the delay time increases with angle of attack increasing.Also observed is that at the intermediate angle of attack near stall,the forced flow features a well re-organized flow pattern.However,for airfoil at high post-stall angle of attack,the already well suppressed flow field can recover to the massively separated flow state and then reattach to airfoil surface with the flow pattern fluctuating between the two states in an irregular manner.This is contrary to one’s first thought that the forced flow at any angles of attack will become well organized and regular,and reflects the complexity of flow separation control. 展开更多
关键词 dielectric barrier discharge plasma actuator alternating current plasma discharge flow separation flow control delayed response
下载PDF
Control of flow separation over a wing model with plasma synthetic jets
6
作者 苏志 宋国正 +5 位作者 宗豪华 梁华 李军 谢理科 刘雪城 孔维良 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第6期135-147,共13页
An array of 30 plasma synthetic jet actuators(PSJAs)is deployed using a modified multichannel discharge circuit to suppress the flow separation over a straight-wing model.The lift and drag of the wing model are measur... An array of 30 plasma synthetic jet actuators(PSJAs)is deployed using a modified multichannel discharge circuit to suppress the flow separation over a straight-wing model.The lift and drag of the wing model are measured by a force balance,and the velocity fields over the suction surface are captured by a particle imaging velocimetry system.Results show that the flow separation of the straight wing originates from the middle of the model and expands towards the wingtips as the angle of attack increases.The flow separation can be suppressed effectively by the PSJAs array.The best flow control effect is achieved at a dimensionless discharge frequency of F^+=1,with the peak lift coefficient increased by 10.5%and the stall angle postponed by 2°.To further optimize the power consumption of the PSJAs,the influence of the density of PSJAs on the flow control effect is investigated.A threshold of the density exits(with the spanwise spacing of PSJAs being 0.2 times of the chord length in the current research),below which the flow control effect starts to deteriorate remarkably.In addition,for comparison purposes,a dielectric barrier discharge(DBD)plasma actuator is installed at the same location of the PSJAs.At the same power consumption,4.9%increase of the peak lift coefficient is achieved by DBD,while that achieved by PSJAs reaches 5.6%. 展开更多
关键词 flow separation plasma synthetic jet DENSITY dielectric barrier discharge
下载PDF
Numerical study on flow separation control over NACA0015 aerofoil using electromagnetic fields
7
作者 Ahmad Sedaghat Mohammad Ali Badri 《Theoretical & Applied Mechanics Letters》 CAS 2013年第5期62-68,共7页
In this study, a flow solver was developed based on the governing RANS equations of compressible flows and was further extended to include the effects of electromagnetic forces namely Lorentz forces. Lorentz forces ma... In this study, a flow solver was developed based on the governing RANS equations of compressible flows and was further extended to include the effects of electromagnetic forces namely Lorentz forces. Lorentz forces may be added as a source term in the governing fluid flow equations. Numerical studies were carried out for NACA0015 aerofoil at high angles of incidences from 15° to 30° and compared with some available cases of experimental and incompressible numerical solutions. The hydrodynamics performance was improved using a magnetic momentum coefficient of up to 0.048. The size of flow separation zone was decreased or completely eliminated by increasing this coefficient. The overall drag was not changed considerably, however the overall lift was increased up to 80 percent at stall angles. 展开更多
关键词 tromagnetic field Lorentz force flow separation NAVIER-STOKES TVD schemes
下载PDF
Experimental Investigation of Flow Separation Control Using Dielectric Barrier Discharge Plasma Actuators 被引量:1
8
作者 李钢 聂超群 +2 位作者 李轶明 朱俊强 徐燕骥 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第5期605-611,共7页
Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow... Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow separation a set of compressor cascade was adopted. In order to investigate the modification of the flow structure by the plasma actuator, the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment. The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low. As the incoming velocity increased, the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application. Methods to increase the intensity of plasma actuator were also studied. 展开更多
关键词 dielectric barrier discharge PLASMA separation flow control hump model compressor cascade
下载PDF
Flow separation control on swept wing with nanosecond pulse driven DBD plasma actuators 被引量:10
9
作者 Zhao Guangyin Li Yinghong +2 位作者 Liang Hua Han Menghu Wu Yun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第2期368-376,共9页
A 15° swept wing with dielectric barrier discharge plasma actuator is designed. Experimental study of flow separation control with nanosecond pulsed plasma actuation is performed at flow velocity up to 40 m/s. Th... A 15° swept wing with dielectric barrier discharge plasma actuator is designed. Experimental study of flow separation control with nanosecond pulsed plasma actuation is performed at flow velocity up to 40 m/s. The effects of the actuation frequency and voltage on the aerodynamic performance of the swept wing are evaluated by the balanced force and pressure measurements in the wind tunnel. At last, the performances on separation flow control of the three types of actuators with plane and saw-toothed exposed electrodes are compared. The optimal actua- tion frequency for the flow separation control on the swept wing is detected, namely the reduced frequency is 0.775, which is different from 2-D airfoil separation control. There exists a threshold voltage for the low swept wing flow control. Before the threshold voltage, as the actuation voltage increases, the control effects become better. The maximum lift is increased by 23.1% with the drag decreased by 22.4% at 14°, compared with the base line. However, the best effects are obtained on actuator with plane exposed electrode in the low-speed experiment and the abilities of saw-toothed actuators are expected to be verified under high-speed conditions. 展开更多
关键词 Dielectric barrier discharge flow control flow separation Nanosecond pulse PLASMA Swept wing
原文传递
A model of flow separation controlled by dielectric barrier discharge 被引量:4
10
作者 Mohammadreza BARZEGARAN Amirreza KOSARI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第5期1660-1669,共10页
Flow separation, as an aerodynamic phenomenon, occurs in specific conditions. The conditions are studied in a wind tunnel on different airfoils. The phenomenon can be delayed or suppressed by exerting an external mome... Flow separation, as an aerodynamic phenomenon, occurs in specific conditions. The conditions are studied in a wind tunnel on different airfoils. The phenomenon can be delayed or suppressed by exerting an external momentum to the flow. Dielectric barrier discharge actuators arranged in a row of 8 and perpendicular to the flow direction can delay flow separation by exerting the momentum. In this study, a mathematical model is developed to predict a parameter, which is utilized to represent flow separation on an NACA0012 airfoil. The model is based on the neurofuzzy method applied to experimental datasets. The neuro model is trained in different flow conditions and the parameter is measured by pressure sensors. 展开更多
关键词 Dielectric barrier discharge flow separation Mathematical model NACA0012 airfoil NEURO-FUZZY
原文传递
Numerical investigation of flow separation behavior in an over-expanded annular conical aerospike nozzle 被引量:3
11
作者 He Miaosheng Qin Lizi Liu Yu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第4期983-1002,共20页
A three-part numerical investigation has been conducted in order to identify the flow separation behavior––the progression of the shock structure, the flow separation pattern with an increase in the nozzle pressure ... A three-part numerical investigation has been conducted in order to identify the flow separation behavior––the progression of the shock structure, the flow separation pattern with an increase in the nozzle pressure ratio(NPR), the prediction of the separation data on the nozzle wall,and the influence of the gas density effect on the flow separation behavior are included.The computational results reveal that the annular conical aerospike nozzle is dominated by shock/shock and shock/boundary layer interactions at all calculated NPRs, and the shock physics and associated flow separation behavior are quite complex.An abnormal flow separation behavior as well as a transition process from no flow separation at highly over-expanded conditions to a restricted shock separation and finally to a free shock separation even at the deign condition can be observed.The complex shock physics has further influence on the separation data on both the spike and cowl walls, and separation criteria suggested by literatures developed from separation data in conical or bell-type rocket nozzles fail at the prediction of flow separation behavior in the present asymmetric supersonic nozzle.Correlation of flow separation with the gas density is distinct for highly overexpanded conditions.Decreasing the gas density or reducing mass flow results in a smaller adverse pressure gradient across the separation shock or a weaker shock system, and this is strongly coupled with the flow separation behavior.The computational results agree well with the experimental data in both shock physics and static wall pressure distribution at the specific NPRs, indicating that the computational methodology here is advisable to accurately predict the flow physics. 展开更多
关键词 AERODYNAMICS Aerospike nozzle flow simulation flow separation Gas density effect Over-expanded flow Reynolds-averaged Navier-Stokes (RANS)
原文传递
Experimental study on airfoil flow separation control via an air-supplement plasma synthetic jet 被引量:2
12
作者 Ru-Bing Liu Wen-Tao Wei +3 位作者 Hai-Peng Wan Qi Lin Fei Li Kun Tang 《Advances in Aerodynamics》 2022年第1期721-742,共22页
An air-supplement plasma synthetic jet(PSJ)actuator increases the air supplemental volume in the recovery stage and improves the jet energy by attaching a check valve to the chamber of a conventional actuator.To explo... An air-supplement plasma synthetic jet(PSJ)actuator increases the air supplemental volume in the recovery stage and improves the jet energy by attaching a check valve to the chamber of a conventional actuator.To explore the flow control effect and mechanism of the air-supplement actuator,via particle image velocimetry experiments in a low-speed wind tunnel,the flow field and boundary layer characteristics of a two-dimensional airfoil surface under different actuation states were compared for different attack angles and jet orifices.The experimental results show that,compared with the conventional actuation state,the jet energy of the air-supplement PSJ is higher and the indirect mixing effect of the counter-vortex sequence produced by the jet-mainstream interaction is stronger.Furthermore,the boundary layer mixing effect is better,which can further suppress flow separation and improve the critical flow separation attack angle.Moreover,increasing the jet momentum coefficient can enhance the flow control effect.The findings of this study could provide guidance for the flow control application of air-supplement PSJs. 展开更多
关键词 Plasma synthetic jet Check valve flow separation Active flow control Air-supplement
原文传递
Effect of Gurney flap on flow separation and aerodynamic performance of an airfoil under rain and icing conditions 被引量:1
13
作者 Hossein Fatahian Hesamoddin Salarian +1 位作者 Majid Eshagh Nimvari Jahanfar Khaleghinia 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第3期659-677,共19页
In the present study,special attention is paid to numerically investigate the aerodynamic performance of the NACA 0012 airfoil under rain and icing conditions with the aim to better understand the severe aerodynamic p... In the present study,special attention is paid to numerically investigate the aerodynamic performance of the NACA 0012 airfoil under rain and icing conditions with the aim to better understand the severe aerodynamic performance penalties of aircraft in flight.Furthermore,in order to control the flow separation and improve the aerodynamic performance of the airfoil under critical atmospheric conditions,the Gurney flap with different heights is attached to the trailing edge of the airfoil.The simulation is done at a Reynolds number of 3.1 × 105 under different atmospheric conditions including dry,rain,icing and coupling of rain and icing conditions.A two-way momentum coupled Eulerian-Lagrangian multiphase method is used to simulate the process of water film layer formed on the airfoil surface due to rainfall.According to the results,accumulation of water due to rainfall and ice accretion on the airfoil surface inevitably provides notable negative effects on the aerodynamic performance of the airfoil.It is concluded that icing induces a higher aerodynamic degradation than rain due to very intensive ice accretion.The Gurney flap as a passive flow control method with a favorable height for each condition is very beneficial.The maximum increment of the lift-to-drag ratio is achieved by Gurney Hap with a height of 0.01 of airfoil chord length for dry and rain conditions and 0.02 of airfoil chord length for icing and coupling of rain and icing conditions,respectively. 展开更多
关键词 AIRFOIL flow separation Aerodynamic performance Gurney flap Rain and icing Multiphase method
原文传递
Influence studyof flow separation on the nozzle vibration response 被引量:1
14
作者 Geng Li Qin Liu +1 位作者 Xuequn Han Yunqiang Guo 《Propulsion and Power Research》 SCIE 2016年第2期108-117,共10页
In the present paper,the vibration response difference of the upper stage nozzlewith higher expansion ratio between ground and altitude simulation hot-firing test is analyzed.lt indicates that the acceleration respons... In the present paper,the vibration response difference of the upper stage nozzlewith higher expansion ratio between ground and altitude simulation hot-firing test is analyzed.lt indicates that the acceleration response of the nozzle under ground hot-firing test is muchhigher than that of the altitude condition.In order to find the essential reason,the experimentaland numerical simulation studies of the flow separation are developed by using the test enginenozzle.The experimental data show that the nozzle intemal flow occurred flow separation andthe divergence cone intemal wall pressure pulsation increased significantly downstream fromthe separation location.The numerical simulation and experimental results indicate that theincrease of internal wall pressure and turbulence pulsating pressure are the substantial reason ofvibration response increasing aggravatingly during the ground firing test. 展开更多
关键词 Solid rocket motor flow separation Oscillation response Spectrum analysis Test engine nozzle
原文传递
Nacelle intake flow separation reduction at cruise condition using active flow control
15
作者 Vinayak Ramachandran Nambiar Vassilios Pachidis 《Propulsion and Power Research》 SCIE 2022年第3期337-352,共16页
Turbofan engine intakes are designed to provide separation-free flow at the fan faceover a wide range of operating conditions. But at some off-design conditions, like at high flightspeeds and high angles of attack (Ao... Turbofan engine intakes are designed to provide separation-free flow at the fan faceover a wide range of operating conditions. But at some off-design conditions, like at high flightspeeds and high angles of attack (AoA), the aero engine intake may encounter flow separation.This boundary layer separation inside the nacelle inlet of an aircraft engine can lead to a largenumber of undesirable outcomes like reduction in fan efficiency, engine stall and high levels ofstress on the fan blades. Active flow control is a promising solution to reduce inlet boundarylayer separation and the associated fan-face flow distortion at such off-design conditions. Byblowing pressurized air into the intake near the separation point, the boundary layer is ener-gized and separation can be controlled. This study investigates the applicability of lip blowing,an active flow control technique, to control intake separation and flow distortion at the fan-face.First, intake separation was triggered in a 3D CFD model based on the NASA CommonResearch Model (CRM) using high AoA cases at cruise condition (Mach number 0.85, Massflow capture ratio w0.7) and the features of separated flow were analyzed. Thereafter, activeflow control was introduce to the intake in the form of two types of lip blowing, direct andpitched blowing. The efficacy of lip blowing at achieving separation control in an ultra highbypass ratio turbofan engine intake has been established through this study. The present paperalso examines the significance of blowing parameters like the type of blowing, blowing pres-sure ratio, and blowing slot dimension, at different angles of attack to identify the critical con-trol parameters. Our research successfully establishes proof of concept by demonstrating the feasibility of using lip blowing for separation control in aero-intakes, via numerical modelling.Furthermore, this study also provides crucial insights regarding the important variables to beconsidered for future experimental studies, and also for detailed studies covering a wider rangeof operating and blowing conditions. 展开更多
关键词 Ultra high bypass ratio turbofan engine NASA Common Research Model Reynolds-averaged Navier-Stokes(RANS) Computational fluid dynamics(CFD) ANSYS Fluent Intake flow separation Active flow control Lip blowing
原文传递
Investigation of the interaction between NS-DBD plasma-induced vortexes and separated flow over a swept wing
16
作者 刘备 梁华 郑博睿 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第1期88-99,共12页
The effect of nanosecond pulsed dielectric barrier discharge(NS-DBD) plasma flow separation control is closely related to the actuation frequency,because it involves the interaction between plasma-induced vortexes and... The effect of nanosecond pulsed dielectric barrier discharge(NS-DBD) plasma flow separation control is closely related to the actuation frequency,because it involves the interaction between plasma-induced vortexes and separated flow.In order to study the mechanism of NS-DBD plasma flow separation control over a swept wing,especially the influence of the actuation frequency,at first,experimental studies of the actuation frequencies at 100 Hz are conducted to validate the numerical simulation method.Then,numerical studies of different actuation frequencies which are 50 Hz,100 Hz,160 Hz,200 Hz,500 Hz,and 1000 Hz,respectively are conducted.The interaction between the plasma-induced vortexes and the separated flow is analyzed.Results show that there is a range of the actuation frequency which includes the frequency(160 Hz) calculated by the average aerodynamic chord length to make the control effect good,but when the actuation frequencies are too low(50 Hz) or too high(1000 Hz),the control effect will get worse.The former is because plasmainduced vortexes disappear in a period within an actuation cycle;the latter is because plasma-induced vortexes cannot develop completely,resulting in a weak vortex intensity. 展开更多
关键词 plasma-induced vortex flow separation control NS-DBD LES
下载PDF
Effect of leading-edge tubercles on the flow over low-aspect-ratio wings at low Reynolds number
17
作者 Pengxin Yang Yichen Zhu Jinjun Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期41-49,共9页
Two-dimensional time-resolved particle image velocimetry(TR-PIV)and stereographic particle image velocimetry(SPIV)techniques were used to investigate the effect of leading-edge tubercles on the flow over low-aspect-ra... Two-dimensional time-resolved particle image velocimetry(TR-PIV)and stereographic particle image velocimetry(SPIV)techniques were used to investigate the effect of leading-edge tubercles on the flow over low-aspect-ratio wing models.The angle of attack is fixed at 10°,and the Reynolds number based on chord length is 5.8×10^(3).It is shown that the leading-edge tubercles can effectively mitigate flow separation in the model and also reduce the contribution of wake vortex to the fluctuating energy of flow.Counter-rotating vortex pairs(CVPs)initiated from the peak of leading-edge tubercles can promote nearby momentum exchange,enhance mixing of the flow and increase the energy contained in the boundary layer,which results in resisting the larger adverse pressure gradient.Therefore,it is concluded that CVPs play an important role in mitigating the flow separation for wings with leading-edge tubercles. 展开更多
关键词 Leading-edge tubercles Low-aspect-ratio flow separation
下载PDF
EXPERIMENTAL INVESTIGATION ON THE TURBULENT COHERENT STRUCTURES OF LAMINAR SEPARATION FLOW OVER A BACKWARD FACING STEP
18
作者 Wang Jinjun Lian Qixiang Lan Shilong(Fluid Mechanics Institute, Beijing University of Aeronautics and Astronautics, Beijing, China, 100083) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1996年第3期175-181,共7页
The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coher... The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coherent structure. the variations of wall shear stress and the boundary layer shape factor are obtained. In the redevelopment region. the detailed analysis is first made for the streak structures in the near wall region and the turbulent boundary layer is formed at (x-xr) / h = 20. 展开更多
关键词 backward facing steps laminar boundary layer separated flow turbulent boundary layer reattached flow
下载PDF
In uence of Endwall Boundary Layer Suction on the Flow Fields of a Critically Loaded Di usion Cascade 被引量:3
19
作者 Zhi-Yuan Cao Bo Liu Ting Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第3期101-114,共14页
Boundary layer suction is an e ective method used to delay separations in axial compressors. Most studies on bound?ary layer suction have focused on improving the performance of compressors,whereas few studies investi... Boundary layer suction is an e ective method used to delay separations in axial compressors. Most studies on bound?ary layer suction have focused on improving the performance of compressors,whereas few studies investigated the influence on details of the flow fields,especially vortexes in compressors. CFD method is validated with experi?mental data firstly. Three single?slot and one double?slot endwall boundary layer suction schemes are designed and investigated. In addition to the investigation of aerodynamic performance of the cascades with and without suction,variations in corner open separation,passage vortex,and concentration shedding vortex,which are rarely seen for the flow controlled blades in published literatures,are analyzed. Then,flow models,which are the ultimate aim,of both baseline and aspirated cascades are established. Results show that single?slot endwall suction scheme adjacent to the suction surface can e ectively remove the corner open separation. With suction mass flow rate of 0.85%,the overall loss coe cient and endwall loss coe cient of the cascade are reduced by 25.2% and 48.6%,respectively. Besides,this scheme increases the static pressure rise coe cient of the cascade by 3.2% and the flow turning angle of up to 3.3° at 90% span. The concentration shedding vortex decreases,whereas the passage vortex increases. For single?slot suction schemes near the middle pitchwise of the passage,the concentration shedding vortex increases and the passage vortex is divided into two smaller passage vortexes,which converge into a single?passage vortex near the trailing edge section of the cascade. For the double?slot suction scheme,triple?passage vortexes are presented in the blade passage. Some new vortex structures are discovered,and the novel flow models of aspirated compressor cascade are proposed,which are important to improve the design of multi?stage aspirated compressors. 展开更多
关键词 Axial?flow compressor Di usion cascade flow separation Corner separation Boundary layer suction Passage vortex
下载PDF
Lift enhancement of airfoil and tip flow control for wind turbine 被引量:1
20
作者 白亚磊 马兴宇 明晓 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第7期825-836,共12页
Two techniques that improve the aerodynamic performance of wind turbine airfoils are described. The airfoil $809, designed specially for wind turbine blades, and the airfoil FX60-100, having a higher lift-drag ratio, ... Two techniques that improve the aerodynamic performance of wind turbine airfoils are described. The airfoil $809, designed specially for wind turbine blades, and the airfoil FX60-100, having a higher lift-drag ratio, are selected to verify the flow control techniques. The flow deflector, fixed at the leading edge, is employed to control the boundary layer separation on the airfoil at a high angle of attack. The multi-island genetic algorithm is used to optimize the parameters of the flow deflector. The results indicate that the flow deflector can suppress the flow separation, delay the stall, and enhance the lift. The characteristics of the blade tip vortex, the wake vortex, and the surface pressure distributions of the blades are analyzed. The vortex diffuser, set up at the blade tip, is employed to control the blade tip vortex. The results show that the vortex diffuser can increase the total pressure coefficient of the core of the vortex, decrease the strength of the blade tip vortex, lower the noise, and improve the efficiency of the blade. 展开更多
关键词 flow separation flow control flow deflector multi-island genetic algorithm tip vortex diffuser
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部