The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve t...The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow.展开更多
[Objective] This study aimed to establish an efficient process for separation of phycoerythrin by using Q Sepharose Fast Flow resin and verity its feasibility for scale-up. [Method] Elution gradient, sample volume and...[Objective] This study aimed to establish an efficient process for separation of phycoerythrin by using Q Sepharose Fast Flow resin and verity its feasibility for scale-up. [Method] Elution gradient, sample volume and flow rate were optimized to determine the optimal separation condition, under which the scale-up process was verified. [Result] The optimal condition for separation of phycoerythrin by using Q Sepharose FF resin was investigated: 30 ml of laver extract was loaded to the Q Sepharose FF column with a bed volume of 8 ml; subsequently, the column was stepwise eluted with 0-0.10-0.35-1.00 mol/L NaCI solution (pH 6.0) at a constant flow rate of 1 ml/min; the elution peak under 0.35 mol/L NaCI solution was collected, and the recovery rate and purity coefficient (A565/A280) of phycoerythrin were determined as 44.3 and 1.15, respectively. Based on the established process, 75 ml of phycoerythrin extract was loaded to the Q Sepharose FF column with a bed volume of 20 ml for separation, while no significant variation was observed in the separation result. [Conclusion] Phycoerythrin can be well separated from laver extract by using Q Sepharose FF resin and the process is feasible for scale-up.展开更多
Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a fl...Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a flying wing model's aerodynamic characteristics. The aerodynamic forces and moments are studied by means of experiment and numerical simulation. The numerical simulation results are in good agreement with experiment results. Both results indicate that the NS-DBD plasma actuators have negligible effect on aerodynamic forces and moment at the angles of attack smaller than 16-. However, significant changes can be achieved with actuation when the model's angle of attack is larger than 16° where the flow separation occurs. The spatial flow field structure results from numerical simulation suggest that the volumetric heat produced by NS-DBD plasma actuator changes the local temperature and density and induces several vortex structures, which strengthen the mixing of the shear layer with the main flow and delay separation or even reattach the separated flow.展开更多
The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model...The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation,therefore, scour on the leeside of the breakwater.展开更多
This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, t...This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, the numerical calculation was carried out using an algebraic Reynolds stress model (ASM) and the standard k-ε model. The modelling of turbulence of com-pressible, complex flows used in the simulation is discussed. Emphasis is given to the derivation of the ASM for 2D axisymmet-rical flows, particularly to the model constants in the algebraic Reynolds stress equations. The TEFESS code, based on a staggered Finite Volume approach with the standard k-ε model and first-order numerical schemes, was used to carry out all the computations. The predicted results for strongly swirling turbulent compressible flow in a vortex tube suggested that the use of the ASM leads to better agreement between the numerical results and experimental data, while the k-ε model cannot capture the stabilizing effect of the swirl.展开更多
The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theor...The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theory of unsteady separation for two-dimensional flows. Journal of Fluid Mechanics, 512, 257-311 (2004)). By analyzing the distribution of the finite-time Lyapunov exponent (FTLE) along the no-slip wall, it can be found that the periodic separation takes place at the point of the zero FTLE. This new criterion is verified with an analytical solution of the separation bubble and a numerical simulation of lid-driven cavity flows.展开更多
The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and th...The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and the simulation is carried out by using finite difference method. The results show that the lubricant flow status and end leakage quantity are greatly influenced by spiral angle,and that the rotating speed has little influence on the flow status. With advisable geometry design, the separation of lubricant between different oil wedges can be obtained, which can decrease the temperature rise effectively.展开更多
Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at dis...Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at disposing the problem that fine particles of waste printed circuit boards cannot be separated efficiently so as to obtain further insight about the underlying mechanisms and demonstrate the separation feasibility in the tapered column separation bed.In this work,a Computational Fluid Dynamics(CFD) coupled with Discrete Element Method(DEM) model for two-phase flow has been extended to simulate the fluid-solid flow in the tapered column separation bed.Its validity is demonstrated by its successful capturing the key features of particles' flow pattern,velocity,the pressure distribution,the axial position with time and axial force for particles with different densities.Simulation results show that the plastic particles and resin particles become overflow,while copper particles,iron particles and aluminum particles successively become underflow,with a discharge water flow rate of 1 m^3/h,an obliquity of 30°.The simulated results agree reasonably well with the experimental observation.Using this equipment to separate waste PCBs is feasible,theoretically.展开更多
Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow...Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow separation a set of compressor cascade was adopted. In order to investigate the modification of the flow structure by the plasma actuator, the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment. The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low. As the incoming velocity increased, the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application. Methods to increase the intensity of plasma actuator were also studied.展开更多
Disposal of produced water during petroleum extraction causes serious environmental damage, hence the need to complete the water treatment before being disposed to environment within the criteria set established by en...Disposal of produced water during petroleum extraction causes serious environmental damage, hence the need to complete the water treatment before being disposed to environment within the criteria set established by environmental agencies in the countries. Ceramics membranes have been highlighted as a good device for separating oil/water. These act as a barrier to oil in the aqueous stream, because their essential properties for filtration, such as chemical inertness, biological stability and resistance to high temperatures. The limitation of the separation process is the decay of permeate flux during operation, due to concentration polarization and fouling. In this sense, this paper aims to evaluate numerically the feasibility of the process of separating oil/water by means of ceramic membranes in the presence of a turbulent flow induced by a tangential inlet. The results of the velocity, pressure and volumetric fraction distributions for the simulations different by varying the mass flow rate inlet and different geometric characteristics of the membrane are presented and analyzed.展开更多
The flow separation control over an NACA 0015 airfoil using continuous alternating current(AC)dielectric barrier discharge(DBD)plasma actuator is investigated experimentally and numerically.This work is intended to re...The flow separation control over an NACA 0015 airfoil using continuous alternating current(AC)dielectric barrier discharge(DBD)plasma actuator is investigated experimentally and numerically.This work is intended to report some observations made from our experiment,to which little attention is paid in the previous studies,but which is thought to be important to the understanding of control of complex flow separation with AC DBD.To this end,the response of separated flow to AC plasma actuation is visualized through the time-resolved particle image velocimetry(PIV)measurement,whereas numerical simulation is carried out to complement the experiment.The flow control process at chord-based Reynolds number(Re)of 3.31×105 is investigated.It is found that the response of external flow to plasma forcing is delayed for up to tens of milliseconds and the delay time increases with angle of attack increasing.Also observed is that at the intermediate angle of attack near stall,the forced flow features a well re-organized flow pattern.However,for airfoil at high post-stall angle of attack,the already well suppressed flow field can recover to the massively separated flow state and then reattach to airfoil surface with the flow pattern fluctuating between the two states in an irregular manner.This is contrary to one’s first thought that the forced flow at any angles of attack will become well organized and regular,and reflects the complexity of flow separation control.展开更多
An array of 30 plasma synthetic jet actuators(PSJAs)is deployed using a modified multichannel discharge circuit to suppress the flow separation over a straight-wing model.The lift and drag of the wing model are measur...An array of 30 plasma synthetic jet actuators(PSJAs)is deployed using a modified multichannel discharge circuit to suppress the flow separation over a straight-wing model.The lift and drag of the wing model are measured by a force balance,and the velocity fields over the suction surface are captured by a particle imaging velocimetry system.Results show that the flow separation of the straight wing originates from the middle of the model and expands towards the wingtips as the angle of attack increases.The flow separation can be suppressed effectively by the PSJAs array.The best flow control effect is achieved at a dimensionless discharge frequency of F^+=1,with the peak lift coefficient increased by 10.5%and the stall angle postponed by 2°.To further optimize the power consumption of the PSJAs,the influence of the density of PSJAs on the flow control effect is investigated.A threshold of the density exits(with the spanwise spacing of PSJAs being 0.2 times of the chord length in the current research),below which the flow control effect starts to deteriorate remarkably.In addition,for comparison purposes,a dielectric barrier discharge(DBD)plasma actuator is installed at the same location of the PSJAs.At the same power consumption,4.9%increase of the peak lift coefficient is achieved by DBD,while that achieved by PSJAs reaches 5.6%.展开更多
The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coher...The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coherent structure. the variations of wall shear stress and the boundary layer shape factor are obtained. In the redevelopment region. the detailed analysis is first made for the streak structures in the near wall region and the turbulent boundary layer is formed at (x-xr) / h = 20.展开更多
In this study, a flow solver was developed based on the governing RANS equations of compressible flows and was further extended to include the effects of electromagnetic forces namely Lorentz forces. Lorentz forces ma...In this study, a flow solver was developed based on the governing RANS equations of compressible flows and was further extended to include the effects of electromagnetic forces namely Lorentz forces. Lorentz forces may be added as a source term in the governing fluid flow equations. Numerical studies were carried out for NACA0015 aerofoil at high angles of incidences from 15° to 30° and compared with some available cases of experimental and incompressible numerical solutions. The hydrodynamics performance was improved using a magnetic momentum coefficient of up to 0.048. The size of flow separation zone was decreased or completely eliminated by increasing this coefficient. The overall drag was not changed considerably, however the overall lift was increased up to 80 percent at stall angles.展开更多
An experimental study was conducted on the interactions of shock wave/turbulence or laminar boundary layer caused by fin-type protuberance, as the lack of detailed understanding of fluctuating pressure loads inside an...An experimental study was conducted on the interactions of shock wave/turbulence or laminar boundary layer caused by fin-type protuberance, as the lack of detailed understanding of fluctuating pressure loads inside and outside the laminar or turbulence boundary layer separation region in hypersonic flow. The changes of fluctuating pressure in separation region were focused on in this paper. The study shows that the existence of fin changes flowfiled on the plate significantly. The laminar boundary layer separation occurs earlier and the separation region is more extensive. Similar flow is observed between a couple of measurement points outside the laminar separation region. However, there are significant differences between the flow inside and outside the separation region. The level of fluctuating pressure of laminar boundary layer is smaller than that in turbulent case. Even so, in laminar case, the peak fluctuating pressure still reaches a high level. Therefore, the structural influence (damage and/or early fatigue) of fluctuating pressure loads caused by the laminar boundary layer separation should not be ignored.展开更多
Vapor-water two phase flow separation in pressure vessel of nuclear power plants is accomplished with swirl motion using vanes. In order to reduce separation pressure loss and to make it economic, a new type of low co...Vapor-water two phase flow separation in pressure vessel of nuclear power plants is accomplished with swirl motion using vanes. In order to reduce separation pressure loss and to make it economic, a new type of low cost simplified innovative separator using lattice core configuration is proposed where swirling is caused by the orthogonal driving flow. The performance of the separator has been assessed numerically with the commercial CFD code FLUENT 14.0. The numerical analysis is compared with the experiment. The geometry and flow conditions are chosen according to the experiment. In the analysis, standard k – e and realizable k – e turbulence models are implemented. The prediction of maximum air void fraction with realizable k – e model was almost the same as input air void fraction but the void fraction computed by standard k – e model was compared better with the experimental results than the realizable k – e model. Some discrepancies in flow pattern between the experimental and simulation results are observed which might be due to the difference of nozzle shape. However, a more detailed model is necessary to arrive at the final conclusion.展开更多
This research aims to simulate a gravity flow fractionation—the process to fractionate erythrocytes through gravitational field using ANSYS simulation software. A particular microfluidic channel was designed as a sep...This research aims to simulate a gravity flow fractionation—the process to fractionate erythrocytes through gravitational field using ANSYS simulation software. A particular microfluidic channel was designed as a separation device. The gravitational equilibrium conditions of the erythrocytes and gravitational field as the parameters were chosen, then deriving the erythrocytes’ path through numerical simulations. After the actual analog measurements, there is no big difference between the flow velocity and the pressure under +/–10% atmosphere condition. According to the simulation results, the particle with the size 8 μm (similar to the erythrocyte size) can be separated to the outside channel and discharged from the collecting area, other particles with the size 9 μm will stay in the fluid motion and can be collected in the final collection area for preservation. Through the analog analysis by using the software-ANSYS-Fluent, the complete flowing path of the particles and the feasibility of the Gravity-Flow Fractionation can be directly proven.展开更多
The influences of the internal and external outlet angles on separation performance and flow field are compared and analyzed. Two arc functions are employed for controlling the internal and external angles. The separa...The influences of the internal and external outlet angles on separation performance and flow field are compared and analyzed. Two arc functions are employed for controlling the internal and external angles. The separation process in the cyclone tube is calculated by using two-fluid model based on the Eulerian-Eulerian method.The results show that the structure with the internal outlet angle smaller than the external one is more beneficial to the separation performance. It is found that the small internal angle can help increase the swirl number,while the small external angle can help increase the friction coefficient. Several groups of numerical simulations are conducted for the air intake unit of the gas turbine in practice. When the internal outlet angle is 35° and the external outlet angle is 40°,the blade has sufficient cyclone strength and the separation rate of particles with diameters of 10—100 μm is between70%—98%. The small blade angle is more conducive to the separation of fine particles,leading to violent collision of large particles on the outer wall and reduction of separation efficiency. In addition,reducing the external angle is conducive to the discharge of large particles.展开更多
Microfluidic analytical system was developed based on annular flow of phase separation multiphase flow with a ternary water-hydrophilic/hydrophobic organic solvent solution. The analytical system was combined with on-...Microfluidic analytical system was developed based on annular flow of phase separation multiphase flow with a ternary water-hydrophilic/hydrophobic organic solvent solution. The analytical system was combined with on-line luminol chemiluminescence detection for catechin analysis. The water (10 mM phosphate buffer, pH 7.3)-acetonitrile-ethyl acetate mixed solution (3:8:4, volume ratio) containing 60 μM luminol and 2 mM hydrogen peroxide as a carrier was fed into the capillary tube (open-tubular fused-silica, 75 μm inner diameter, 110 cm effective length) at a flow rate of 1.0 μL·min-1. The carrier solution showed stable chemiluminescence as a baseline on the flow chart. Eight catechins were detected as negative peaks for their antioxidant potential with different detection times. The system was applied to analyze the amounts of catechin in commercially available green tea beverages.展开更多
We propose a novel flow measurement method for gas–liquid two-phase slug flow by using the blind source separation technique. The flow measurement model is established based on the fluctuation characteristics of diff...We propose a novel flow measurement method for gas–liquid two-phase slug flow by using the blind source separation technique. The flow measurement model is established based on the fluctuation characteristics of differential pressure(DP) signals measured from a Venturi meter. It is demonstrated that DP signals of two-phase flow are a linear mixture of DP signals of single phase fluids. The measurement model is a combination of throttle relationship and blind source separation model. In addition, we estimate the mixture matrix using the independent component analysis(ICA) technique. The mixture matrix could be described using the variances of two DP signals acquired from two Venturi meters. The validity of the proposed model was tested in the gas–liquid twophase flow loop facility. Experimental results showed that for most slug flow the relative error is within 10%.We also find that the mixture matrix is beneficial to investigate the flow mechanism of gas–liquid two-phase flow.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42027806 and 42041006)。
文摘The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow.
基金Supported by National Natural Science Foundation of China(51143012)Natural Science Foundation of Shandong Province(ZR2009BM006)~~
文摘[Objective] This study aimed to establish an efficient process for separation of phycoerythrin by using Q Sepharose Fast Flow resin and verity its feasibility for scale-up. [Method] Elution gradient, sample volume and flow rate were optimized to determine the optimal separation condition, under which the scale-up process was verified. [Result] The optimal condition for separation of phycoerythrin by using Q Sepharose FF resin was investigated: 30 ml of laver extract was loaded to the Q Sepharose FF column with a bed volume of 8 ml; subsequently, the column was stepwise eluted with 0-0.10-0.35-1.00 mol/L NaCI solution (pH 6.0) at a constant flow rate of 1 ml/min; the elution peak under 0.35 mol/L NaCI solution was collected, and the recovery rate and purity coefficient (A565/A280) of phycoerythrin were determined as 44.3 and 1.15, respectively. Based on the established process, 75 ml of phycoerythrin extract was loaded to the Q Sepharose FF column with a bed volume of 20 ml for separation, while no significant variation was observed in the separation result. [Conclusion] Phycoerythrin can be well separated from laver extract by using Q Sepharose FF resin and the process is feasible for scale-up.
基金supported by Funding of Jiangsu Innovation Program for Graduate Education(No. KYLX16_0310)the Fundamental Research Funds for the Central Universities (No. NP2016406)+1 种基金supported by Graduate Innovation Center in NUAA (No. kfjj20170117)China Postdoctoral Science Foundation (No. 2017M610325)
文摘Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a flying wing model's aerodynamic characteristics. The aerodynamic forces and moments are studied by means of experiment and numerical simulation. The numerical simulation results are in good agreement with experiment results. Both results indicate that the NS-DBD plasma actuators have negligible effect on aerodynamic forces and moment at the angles of attack smaller than 16-. However, significant changes can be achieved with actuation when the model's angle of attack is larger than 16° where the flow separation occurs. The spatial flow field structure results from numerical simulation suggest that the volumetric heat produced by NS-DBD plasma actuator changes the local temperature and density and induces several vortex structures, which strengthen the mixing of the shear layer with the main flow and delay separation or even reattach the separated flow.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51509178 and 51509177)the Natural Science Foundation of Tianjin City(Grant No.14JCYBJC22100)the Natural Science Foundation of Tianjin Education Commission(Grant No.2017KJ046)
文摘The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation,therefore, scour on the leeside of the breakwater.
文摘This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, the numerical calculation was carried out using an algebraic Reynolds stress model (ASM) and the standard k-ε model. The modelling of turbulence of com-pressible, complex flows used in the simulation is discussed. Emphasis is given to the derivation of the ASM for 2D axisymmet-rical flows, particularly to the model constants in the algebraic Reynolds stress equations. The TEFESS code, based on a staggered Finite Volume approach with the standard k-ε model and first-order numerical schemes, was used to carry out all the computations. The predicted results for strongly swirling turbulent compressible flow in a vortex tube suggested that the use of the ASM leads to better agreement between the numerical results and experimental data, while the k-ε model cannot capture the stabilizing effect of the swirl.
基金supported by the National Natural Science Foundation of China(Nos.11372340 and 11732016)
文摘The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theory of unsteady separation for two-dimensional flows. Journal of Fluid Mechanics, 512, 257-311 (2004)). By analyzing the distribution of the finite-time Lyapunov exponent (FTLE) along the no-slip wall, it can be found that the periodic separation takes place at the point of the zero FTLE. This new criterion is verified with an analytical solution of the separation bubble and a numerical simulation of lid-driven cavity flows.
基金This project is supported by National Natural Science Foundation of China (No.50275089)
文摘The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and the simulation is carried out by using finite difference method. The results show that the lubricant flow status and end leakage quantity are greatly influenced by spiral angle,and that the rotating speed has little influence on the flow status. With advisable geometry design, the separation of lubricant between different oil wedges can be obtained, which can decrease the temperature rise effectively.
基金the National Key Basic Research Program of China(No.2012CB214904)the National Natural Science Foundation of China for Innovative Research Group(No.51221462)+2 种基金the National Natural Science Foundation of China(Nos.51304196,51134022,and 51174203)the Natural Science Foundation of Jiangsu Province of China(No. BK2012136)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120095130001)
文摘Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at disposing the problem that fine particles of waste printed circuit boards cannot be separated efficiently so as to obtain further insight about the underlying mechanisms and demonstrate the separation feasibility in the tapered column separation bed.In this work,a Computational Fluid Dynamics(CFD) coupled with Discrete Element Method(DEM) model for two-phase flow has been extended to simulate the fluid-solid flow in the tapered column separation bed.Its validity is demonstrated by its successful capturing the key features of particles' flow pattern,velocity,the pressure distribution,the axial position with time and axial force for particles with different densities.Simulation results show that the plastic particles and resin particles become overflow,while copper particles,iron particles and aluminum particles successively become underflow,with a discharge water flow rate of 1 m^3/h,an obliquity of 30°.The simulated results agree reasonably well with the experimental observation.Using this equipment to separate waste PCBs is feasible,theoretically.
基金National Natural Science Foundation of China(Nos.50676094,50676095,50776086 and 50736007)Fundamental Researches of National Defense in Chinese Academy of Sciences(No.AB20070090)
文摘Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow separation a set of compressor cascade was adopted. In order to investigate the modification of the flow structure by the plasma actuator, the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment. The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low. As the incoming velocity increased, the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application. Methods to increase the intensity of plasma actuator were also studied.
文摘Disposal of produced water during petroleum extraction causes serious environmental damage, hence the need to complete the water treatment before being disposed to environment within the criteria set established by environmental agencies in the countries. Ceramics membranes have been highlighted as a good device for separating oil/water. These act as a barrier to oil in the aqueous stream, because their essential properties for filtration, such as chemical inertness, biological stability and resistance to high temperatures. The limitation of the separation process is the decay of permeate flux during operation, due to concentration polarization and fouling. In this sense, this paper aims to evaluate numerically the feasibility of the process of separating oil/water by means of ceramic membranes in the presence of a turbulent flow induced by a tangential inlet. The results of the velocity, pressure and volumetric fraction distributions for the simulations different by varying the mass flow rate inlet and different geometric characteristics of the membrane are presented and analyzed.
文摘The flow separation control over an NACA 0015 airfoil using continuous alternating current(AC)dielectric barrier discharge(DBD)plasma actuator is investigated experimentally and numerically.This work is intended to report some observations made from our experiment,to which little attention is paid in the previous studies,but which is thought to be important to the understanding of control of complex flow separation with AC DBD.To this end,the response of separated flow to AC plasma actuation is visualized through the time-resolved particle image velocimetry(PIV)measurement,whereas numerical simulation is carried out to complement the experiment.The flow control process at chord-based Reynolds number(Re)of 3.31×105 is investigated.It is found that the response of external flow to plasma forcing is delayed for up to tens of milliseconds and the delay time increases with angle of attack increasing.Also observed is that at the intermediate angle of attack near stall,the forced flow features a well re-organized flow pattern.However,for airfoil at high post-stall angle of attack,the already well suppressed flow field can recover to the massively separated flow state and then reattach to airfoil surface with the flow pattern fluctuating between the two states in an irregular manner.This is contrary to one’s first thought that the forced flow at any angles of attack will become well organized and regular,and reflects the complexity of flow separation control.
基金National Natural Science Foundation of China(Nos.12002384 and 11802341)the National Key Laboratory Foundation of China(No.614220210200112)the Academician Workstation Foundation of the Green Aerotechnics Research Institute of Chongqing Jiaotong University(No.GATRI2020C06003)。
文摘An array of 30 plasma synthetic jet actuators(PSJAs)is deployed using a modified multichannel discharge circuit to suppress the flow separation over a straight-wing model.The lift and drag of the wing model are measured by a force balance,and the velocity fields over the suction surface are captured by a particle imaging velocimetry system.Results show that the flow separation of the straight wing originates from the middle of the model and expands towards the wingtips as the angle of attack increases.The flow separation can be suppressed effectively by the PSJAs array.The best flow control effect is achieved at a dimensionless discharge frequency of F^+=1,with the peak lift coefficient increased by 10.5%and the stall angle postponed by 2°.To further optimize the power consumption of the PSJAs,the influence of the density of PSJAs on the flow control effect is investigated.A threshold of the density exits(with the spanwise spacing of PSJAs being 0.2 times of the chord length in the current research),below which the flow control effect starts to deteriorate remarkably.In addition,for comparison purposes,a dielectric barrier discharge(DBD)plasma actuator is installed at the same location of the PSJAs.At the same power consumption,4.9%increase of the peak lift coefficient is achieved by DBD,while that achieved by PSJAs reaches 5.6%.
文摘The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coherent structure. the variations of wall shear stress and the boundary layer shape factor are obtained. In the redevelopment region. the detailed analysis is first made for the streak structures in the near wall region and the turbulent boundary layer is formed at (x-xr) / h = 20.
文摘In this study, a flow solver was developed based on the governing RANS equations of compressible flows and was further extended to include the effects of electromagnetic forces namely Lorentz forces. Lorentz forces may be added as a source term in the governing fluid flow equations. Numerical studies were carried out for NACA0015 aerofoil at high angles of incidences from 15° to 30° and compared with some available cases of experimental and incompressible numerical solutions. The hydrodynamics performance was improved using a magnetic momentum coefficient of up to 0.048. The size of flow separation zone was decreased or completely eliminated by increasing this coefficient. The overall drag was not changed considerably, however the overall lift was increased up to 80 percent at stall angles.
基金Acknowledgements The authors acknowledge the support from the Key National Natural Science Foundation of China (No. 91116009 & No. 91216114). The support provided by the FD-20 wind tunnel staff is greatly appreciated.
文摘An experimental study was conducted on the interactions of shock wave/turbulence or laminar boundary layer caused by fin-type protuberance, as the lack of detailed understanding of fluctuating pressure loads inside and outside the laminar or turbulence boundary layer separation region in hypersonic flow. The changes of fluctuating pressure in separation region were focused on in this paper. The study shows that the existence of fin changes flowfiled on the plate significantly. The laminar boundary layer separation occurs earlier and the separation region is more extensive. Similar flow is observed between a couple of measurement points outside the laminar separation region. However, there are significant differences between the flow inside and outside the separation region. The level of fluctuating pressure of laminar boundary layer is smaller than that in turbulent case. Even so, in laminar case, the peak fluctuating pressure still reaches a high level. Therefore, the structural influence (damage and/or early fatigue) of fluctuating pressure loads caused by the laminar boundary layer separation should not be ignored.
文摘Vapor-water two phase flow separation in pressure vessel of nuclear power plants is accomplished with swirl motion using vanes. In order to reduce separation pressure loss and to make it economic, a new type of low cost simplified innovative separator using lattice core configuration is proposed where swirling is caused by the orthogonal driving flow. The performance of the separator has been assessed numerically with the commercial CFD code FLUENT 14.0. The numerical analysis is compared with the experiment. The geometry and flow conditions are chosen according to the experiment. In the analysis, standard k – e and realizable k – e turbulence models are implemented. The prediction of maximum air void fraction with realizable k – e model was almost the same as input air void fraction but the void fraction computed by standard k – e model was compared better with the experimental results than the realizable k – e model. Some discrepancies in flow pattern between the experimental and simulation results are observed which might be due to the difference of nozzle shape. However, a more detailed model is necessary to arrive at the final conclusion.
文摘This research aims to simulate a gravity flow fractionation—the process to fractionate erythrocytes through gravitational field using ANSYS simulation software. A particular microfluidic channel was designed as a separation device. The gravitational equilibrium conditions of the erythrocytes and gravitational field as the parameters were chosen, then deriving the erythrocytes’ path through numerical simulations. After the actual analog measurements, there is no big difference between the flow velocity and the pressure under +/–10% atmosphere condition. According to the simulation results, the particle with the size 8 μm (similar to the erythrocyte size) can be separated to the outside channel and discharged from the collecting area, other particles with the size 9 μm will stay in the fluid motion and can be collected in the final collection area for preservation. Through the analog analysis by using the software-ANSYS-Fluent, the complete flowing path of the particles and the feasibility of the Gravity-Flow Fractionation can be directly proven.
文摘The influences of the internal and external outlet angles on separation performance and flow field are compared and analyzed. Two arc functions are employed for controlling the internal and external angles. The separation process in the cyclone tube is calculated by using two-fluid model based on the Eulerian-Eulerian method.The results show that the structure with the internal outlet angle smaller than the external one is more beneficial to the separation performance. It is found that the small internal angle can help increase the swirl number,while the small external angle can help increase the friction coefficient. Several groups of numerical simulations are conducted for the air intake unit of the gas turbine in practice. When the internal outlet angle is 35° and the external outlet angle is 40°,the blade has sufficient cyclone strength and the separation rate of particles with diameters of 10—100 μm is between70%—98%. The small blade angle is more conducive to the separation of fine particles,leading to violent collision of large particles on the outer wall and reduction of separation efficiency. In addition,reducing the external angle is conducive to the discharge of large particles.
文摘Microfluidic analytical system was developed based on annular flow of phase separation multiphase flow with a ternary water-hydrophilic/hydrophobic organic solvent solution. The analytical system was combined with on-line luminol chemiluminescence detection for catechin analysis. The water (10 mM phosphate buffer, pH 7.3)-acetonitrile-ethyl acetate mixed solution (3:8:4, volume ratio) containing 60 μM luminol and 2 mM hydrogen peroxide as a carrier was fed into the capillary tube (open-tubular fused-silica, 75 μm inner diameter, 110 cm effective length) at a flow rate of 1.0 μL·min-1. The carrier solution showed stable chemiluminescence as a baseline on the flow chart. Eight catechins were detected as negative peaks for their antioxidant potential with different detection times. The system was applied to analyze the amounts of catechin in commercially available green tea beverages.
基金Supported by the National Natural Science Foundation of China(51304231)the Natural Science Foundation of Shandong Province(ZR2010EQ015)
文摘We propose a novel flow measurement method for gas–liquid two-phase slug flow by using the blind source separation technique. The flow measurement model is established based on the fluctuation characteristics of differential pressure(DP) signals measured from a Venturi meter. It is demonstrated that DP signals of two-phase flow are a linear mixture of DP signals of single phase fluids. The measurement model is a combination of throttle relationship and blind source separation model. In addition, we estimate the mixture matrix using the independent component analysis(ICA) technique. The mixture matrix could be described using the variances of two DP signals acquired from two Venturi meters. The validity of the proposed model was tested in the gas–liquid twophase flow loop facility. Experimental results showed that for most slug flow the relative error is within 10%.We also find that the mixture matrix is beneficial to investigate the flow mechanism of gas–liquid two-phase flow.